Sixth Annual Meeting of the Organization for the Study of Sex Differences

A Joint Meeting With The

International Society for Gender Medicine

June 7 – 9, 2012
Sheraton Inner Harbor Hotel
Baltimore, Maryland
USA
CONTENTS

3 Agenda

7 Welcome letters from the Presidents and the Executive Director

9 New Investigator Awards

10 Speaker Biographies

20 Keynote Speaker Abstract

19 Panel Presentation Abstracts
19 Presidential Symposium: Sex Differences in Fetal Programming
21 New Investigator Symposium
25 Symposium I: Sex Differences and Their Impact on Osteoarthritis
26 Symposium II: Global Assessment of Severe Coronary Artery Disease
28 Symposium III: Sex Disparities in Cancer
30 Symposium IV: Sex Differences in Stem Cells
32 Symposium V: Sex Differences in Mechanistic Pathways of Cardiovascular Disease
33 Symposium VI: Depression and Anxiety Disorders: Novel Targets for Sex Specific Treatments
34 Symposium VII: Animal Models for Sex Differences Research
36 Symposium VIII: Post-traumatic Stress Disorder (PTSD) and One’s Sex
37 Symposium IX: Sex Differences in Global Health

39 Capstone Speaker Abstract

40 Poster Presentation Abstracts
36 Session 1 – June 8
60 Session 2 – June 9

87 OSSD Annual Membership Meeting Agenda

88 List of Sponsors and Exhibitors

89 Planning/Programs Committee and Staff

90 OSSD Officers and Councilors

92 Index of Authors
AGENDA

THURSDAY, JUNE 7

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 am</td>
<td>Breakfast Provided for Workshop Attendees</td>
</tr>
<tr>
<td>8:30 – 12:00 pm</td>
<td>Workshop: Building Sex/Gender-based Competencies into Medical and Graduate Curricula — CHESAPEAKE III</td>
</tr>
<tr>
<td></td>
<td>Chairs: Karin Schenck-Gustafsson, M.D. and Jill Becker, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Speakers:</td>
</tr>
<tr>
<td></td>
<td>Jill Becker, Ph.D. — Introduction: key questions and challenges</td>
</tr>
<tr>
<td></td>
<td>Karin Schenck-Gustafsson, M.D. and Ineke Klinge, Ph.D. — European competencies in sex/gender medicine</td>
</tr>
<tr>
<td></td>
<td>Gillian Einstein, Ph.D., Susan Phillips, Ph.D., and Zena Sharman, Ph.D. — Canadian strategies for sex/gender approaches in graduate and medical education</td>
</tr>
<tr>
<td></td>
<td>Marjorie Jenkins, M.D. and Joanna Wilson, D.O. — US approaches to medical curriculum development and methods to track sex and gender competencies within existing curriculum</td>
</tr>
<tr>
<td>12:00 – 2:30 pm</td>
<td>Meeting Registration — CHESAPEAKE GALLERY</td>
</tr>
<tr>
<td>12:00 – 1:00 pm</td>
<td>Lunch on your own</td>
</tr>
<tr>
<td>1:00 – 1:30 pm</td>
<td>Opening Ceremony — CHESAPEKE I & II</td>
</tr>
<tr>
<td></td>
<td>Remarks:</td>
</tr>
<tr>
<td></td>
<td>Virginia M. Miller, Ph.D., OSSD President</td>
</tr>
<tr>
<td></td>
<td>Marek Glezerman, M.D., IGM President</td>
</tr>
<tr>
<td></td>
<td>Margaret McCarthy, Ph.D., OSSD Program Committee Co-Chair</td>
</tr>
<tr>
<td></td>
<td>Phyllis Greenberger, M.S.W., SWHR President</td>
</tr>
<tr>
<td>1:30 – 3:15 pm</td>
<td>Presidential Symposium: Sex Differences in Fetal Programming — CHESAPEAKE I & II</td>
</tr>
<tr>
<td></td>
<td>Chairs: Marek Glezerman, M.D. and Virginia M. Miller, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Speakers:</td>
</tr>
<tr>
<td></td>
<td>Melissa Hines, Ph.D. — Prenatal testosterone and human neurobehavioral development: outcomes and mechanisms</td>
</tr>
<tr>
<td></td>
<td>Tracy Bale, Ph.D. — Prenatal programming of stress dysregulation: epigenetic and placental contributions</td>
</tr>
<tr>
<td></td>
<td>Marek Glezerman, M.D. — Fetal programming beyond health and disease</td>
</tr>
<tr>
<td>3:15 – 3:30 pm</td>
<td>Break, coffee and tea provided</td>
</tr>
<tr>
<td>3:30 – 4:30 pm</td>
<td>Keynote — CHESAPEKE I & II</td>
</tr>
<tr>
<td></td>
<td>Marianne Legato, M.D. — Gender-Specific Medicine after the Age of Darwin: Achievements and Challenges in 21st Century Science</td>
</tr>
<tr>
<td>4:30 – 6:30 pm</td>
<td>Young Investigator Symposium</td>
</tr>
<tr>
<td>6:30 – 8:30 pm</td>
<td>Opening Reception — HARBORVIEW BALLROOM</td>
</tr>
</tbody>
</table>

SIXTH ANNUAL MEETING OF THE ORGANIZATION FOR THE STUDY OF SEX DIFFERENCES
FRIDAY, JUNE 8

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 – 8:30 am</td>
<td>Breakfast provided — CHESAPEAKE GALLERY</td>
</tr>
<tr>
<td>8:30 – 10:30 am</td>
<td>Simultaneous Sessions Begin</td>
</tr>
<tr>
<td></td>
<td>Symposium I — CHESAPEAKE I</td>
</tr>
<tr>
<td></td>
<td>Sex Differences and Their Impact on Osteoarthritis</td>
</tr>
<tr>
<td></td>
<td>Co-Chairs: Barbara Boyan, Ph.D. and Roger M. Enoka, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Speakers:</td>
</tr>
<tr>
<td></td>
<td>Mary O’Connor, M.D. — The knee as an organ: sex differences in incidence and severity of OA</td>
</tr>
<tr>
<td></td>
<td>David Hart, Ph.D. — Hormonal modulation contributes to sex differences in OA</td>
</tr>
<tr>
<td></td>
<td>Kathleen Sluka, Ph.D. — Central nervous system modulates knee OA pain</td>
</tr>
<tr>
<td></td>
<td>Lorena Havill, Ph.D. — Sex differences in naturally occurring knee osteoarthritis in baboons</td>
</tr>
<tr>
<td>10:30 – 11:00 am</td>
<td>Break, coffee and tea provided</td>
</tr>
<tr>
<td></td>
<td>Poster Session I Setup and Exhibits Open</td>
</tr>
<tr>
<td>11:00 – 1:00 pm</td>
<td>Simultaneous Sessions</td>
</tr>
<tr>
<td></td>
<td>Symposium III — CHESAPEAKE I</td>
</tr>
<tr>
<td></td>
<td>Sex Disparities in Cancer</td>
</tr>
<tr>
<td></td>
<td>Chair: Michael Cook, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Speakers:</td>
</tr>
<tr>
<td></td>
<td>Michael Cook, Ph.D. — Sex disparities in cancer incidence, mortality and survival</td>
</tr>
<tr>
<td></td>
<td>Michael Karin, Ph.D. — Inflammation, metabolism, aging and cancer: dangerous liaisons</td>
</tr>
<tr>
<td></td>
<td>Svetomir Markovic, Ph.D., M.D. — Sex hormones and immune regulation: implications for cancer therapy</td>
</tr>
<tr>
<td></td>
<td>James Fox, D.V.M. — Role of estrogen in Helicobacter pylori associated gastric cancer</td>
</tr>
<tr>
<td></td>
<td>— or —</td>
</tr>
<tr>
<td></td>
<td>Symposium IV — CHESAPEAKE II</td>
</tr>
<tr>
<td></td>
<td>Sex Differences in Stem Cells</td>
</tr>
<tr>
<td></td>
<td>Chair: Margaret McCarthy, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Speakers:</td>
</tr>
<tr>
<td></td>
<td>Johnny Huard, Ph.D. — Effect of donor & host sex in tissue regeneration with muscle derived stem cells</td>
</tr>
<tr>
<td></td>
<td>Margaret McCarthy, Ph.D. — Sex differences in neural and glial genesis in the brain</td>
</tr>
<tr>
<td></td>
<td>Jaclyn Schwarz, Ph.D. — Sex differences in microglial colonization of the developing brain: implications for health and disease</td>
</tr>
<tr>
<td></td>
<td>Anne Comi, M.D. — Modulation of post-stroke neural and glial progenitor responses is sex-dependent</td>
</tr>
<tr>
<td>1:00 – 2:30 pm</td>
<td>Poster Session I — CHESAPEAKE III</td>
</tr>
<tr>
<td>1:00 – 2:00 pm</td>
<td>IGM Assembly — CHESAPEAKE I</td>
</tr>
</tbody>
</table>

Lunch on your own and free afternoon
SATURDAY, JUNE 9

8:00 – 8:30 am Breakfast provided — CHESAPEAKE GALLERY

8:30 – 10:30 am Simultaneous Sessions Begin

Symposium V — CHESAPEAKE I
Sex Differences in Mechanistic Pathways of Cardiovascular Disease
Chair: Vera Regitz-Zagrozek, M.D.
Speakers:
 Clinton Webb, Ph.D. — Mechanisms of sex difference in vascular function
 Noel Bairey-Merz, M.D. — The Yentl Syndrome 2011: Why are there differences in ischemic heart disease in women and men (including genes)?
 Vera Regitz-Zagrozek, M.D. — Sex differences in genomics of left ventricular remodeling
 Istvan Merchenthaler, Ph.D. — A novel 17-beta-estradiol prodrug for the treatment of menopausal symptoms: hot flushes, depression and sleep disorders in animal models
— or —

Symposium VI — CHESAPEAKE II
Depression and Anxiety Disorders: Novel Targets for Sex Specific Treatments
Co-Chairs: Gretchen N. Neigh, Ph.D. and Kevin D. Beck, Ph.D.
Speakers:
 Georgia Hodes, Ph.D. — Epigenetic regulation of sex differences in stress related disorders
 Debbie Bangasser, Ph.D. — Sex differences in the stress-response systems: from molecules to mental illness
 Kerry Ressler, Ph.D. — Differential sex-specific effects of the PACAP (ADCYAP1R1) and Androgen (SRD5A2) pathways with PTSD in a highly traumatized population
 Dov Feldberg, M.D. — Unique characteristics of anxiety and depression among couples undergoing in vitro fertilization treatment

10:30 – 11:00 am Break, coffee and tea provided
Poster Session II setup

11:00 – 1:00 pm Simultaneous Sessions

Symposium VII — CHESAPEAKE I
Animal Models for Sex Differences Research
Co-Chairs: Margaret McCarthy, Ph.D. and Art Arnold, Ph.D.
Speakers:
 Douglas Portman, Ph.D. — Sex differences in the nervous system: Insights from genetic model systems
 Susan Fahrbach, Ph.D. — Sex differences in insects: beyond fru and haplodiploidy
 Daniel Gorelick, Ph.D. — Fishing for sex differences
 Gregory F. Ball, Ph.D. — Neural sex differences and similarities in the control of vocal behavior in songbirds
— or —

Symposium VIII — CHESAPEAKE II
Post-traumatic Stress Disorder (PTSD) and One’s Sex
Chair: Kathryn Sandberg, Ph.D.
Speakers:
 Amy Street, Ph.D. — Experiences of sexual trauma during military service: implications for the gender-specific risk of PTSD
 Dawne Vogt, Ph.D. — Gender differences in combat-related stressors and their association with postdeployment mental health among U.S. OEF/OIF veterans
 Thomas A. Mellman, M.D. — Sex differences in sleep-related predictors of PTSD
 Ann Rasmusson, M.D. — Sex differences in neurobiology with potential relevance to PTSD risk, symptom severity, and chronicity

1:00 – 2:00 pm Lunch on your own
— or —

1:30 – 2:30 pm NIH Workshop — CHESAPEAKE I
Feel free to bring your lunch to the workshop
1:30 – 3:00 pm **Poster Session II** – CHESAPEAKE III

3:00 – 5:00 pm **Symposium IX** – CHESAPEAKE II
Sex Differences in Global Health
Co-Chairs: Sabra Klein, Ph.D. and Anna Thorson, Ph.D., M.D., M.P.H.
Speakers:
Anna Thorson, Ph.D., M.D., M.P.H. – Sex and gender aspects of tuberculosis: a review
William J. Moss, M.D., M.P.H. – Sex differences in response to measles and measles vaccine
Oralee Branch, Ph.D. – Males, females and children’s inflammatory responses during and after malaria infection: sex and sex hormones associated with chronic inflammation
Elizabeth Connick, M.D. – Sex differences in HIV-1 immunopathogenesis

5:00 - 6:00 pm **Capstone** – CHESAPEAKE II
Chris Gregg, Ph.D. – Maternal and paternal gene networks in the male and female brain

6:00 - 7:00 **General OSSD Membership Meeting**
– CHESAPEAKE II

7:30 pm **Awards Banquet** (Ticket purchase required)
– HARBORVIEW BALLROOM
Welcome to the sixth annual meeting of the Organization for the Study of Sex Differences (OSSD) and the first milestone collaboration of the International Society for Gender Medicine (IGM)! This joint effort highlights how research into the study of sex differences and gender medicine has permeated all aspects of science and medicine on an international scale. Under the leadership of Margaret McCarthy, PhD of the University of Maryland School of Medicine, Sabra Klein, PhD of Johns Hopkins University and Council of the IGM, this year’s program includes an outstanding group of basic and clinical researchers from around the world. My thanks to the Society of Women’s Health Research who founded OSSD and continues to provide financial and administrative support for this meeting.

The Official journal for OSSD is the Biology of Sex Differences (BSD) which is published by Biomed Central as an open access, peer-reviewed online journal. Content encompasses all aspects of effects of sex and gender on biology and disease. Thanks to the outstanding dedication of the editor-in-chief, Art Arnold, PhD, and an internationally acclaimed editorial board, the journal is off to a great start with over 2000 accessions/month for abstracts and articles. I encourage all of you to submit your best work to BSD for rapid dissemination of the latest findings in the biology of sex differences to the world.

These are exciting times for the study of sex differences and gender medicine. I am delighted to share them with you. This past year has presented many challenges for OSSD. However, I am optimistic about the Organization’s future under the new leadership of our incoming President, Geert de Vries, PhD. I offer him and our members my continued support of the Organizations programs and efforts.

It has been my honor and privilege to serve as your President for these past two years and my heartfelt thanks to the OSSD Council and members for their support and help. OSSD continues to lead the discipline of the study of sex differences. I encourage you to renew your memberships to OSSD and to encourage your colleagues to join so we can continue to be a vital force in directing the future of discovery.

Virginia M. Miller, PhD
President, Organization for the Study of Sex Differences
Professor, Surgery and Physiology
Mayo Clinic

Welcome to all of you and thank you for coming to the Sixth Annual OSSD meeting held in conjunction with the IGM. The Society for Women’s Health Research is proud of forming the OSSD almost seven years ago with the help from many of you who have served in a leadership role with the organization. We are especially excited this year that our international colleagues have joined us and we welcome all of them and their students. We all share a common interest: the study of sex and gender differences is crucial in understanding a variety of biological pathways and clinical conditions. We hope you will all enjoy the scientific sessions as well as the beautiful city of Baltimore. Thank you again for attending this important conference.

Christine Carter, Ph.D., M.P.H.
Executive Director, Organization for the Study of Sex Differences
Vice President, Scientific Affairs, Society for Women’s Health Research
FROM THE PRESIDENT OF THE INSTITUTE FOR GENDER MEDICINE

It is with great pleasure that I welcome you to the first joint congress on Gender and Sex-Specific Medicine organized by the Organization for the Study of Sex Differences (OSSD) and the International Society for Gender Medicine (IGM). This new collaboration was long overdue. We all need to join forces so that our young discipline continues to develop and to change paradigms. Gender-specific medicine is a new way of looking at the physiologic and pathophysiological differences between men and women and great efforts need to be invested in research and education in order to re-write many chapters in modern medicine. The IGM was founded less than a decade ago as an umbrella organization for national and professional societies dedicated to the study of gender and sex specific differences. Our member societies and organizations are in Austria, Germany, Italy, Israel, and Sweden and in the U.S. Together with individual members from countries without professional societies we have now close to 450 members and we are growing steadily. IGM member societies are sponsoring diversified educational programs and have organized five international congresses and many national workshops and scientific meetings.

During the 5th International Congress on Gender Medicine, which was held in December, 2010 in Tel Aviv, Prof. Virginia Miller, the president of OSSD, and myself agreed that we should have joint meetings of our societies which should take place in alternative years in North America and in countries with member societies of IGM. The respective boards of both societies immediately endorsed this proposal and in June 2012 we will have our first historical joint meeting in Baltimore.

The OSSD and the Society for Women’s Health Research (SWHR) have done a great job in taking the lead to put together a program of the highest scientific standard and we at the IGM are proud to be part of it.

I am looking forward with great anticipation to a fruitful, inspiring and scientifically and socially rewarding event.

Marek Glezerman, M.D.
President, The International Society for Gender Medicine (www.isogem.com)
The Emma Najman Professor of Obstetrics and Gynecology, Tel Aviv University
President, The Israel Society for Gender Medicine (www.isragem.org.il)
Director, Research Center for Gender Medicine, Rabin Medical Center, Israel
NEW INVESTIGATOR AWARDS

OSSD 2012
NEW INVESTIGATOR TRAVEL Awardees

Michael Coronado
Nafissa Ismail
Deena Kahn
Bharti Manwani
Matia Solomon

IGM 2012
NEW INVESTIGATOR Awardees

Lena Kosi
Marco Zavatta

OSSD 2012
ELIZABETH YOUNG NEW INVESTIGATOR SYMPOSIUM SPEAKERS

Charlotte Iacobaeus
Georgios Kararigas
Matia Solomon
Kathryn Lenz
Dionne Robinson
Matthew Paul
S P E A K E R B I O G R A P H I E S

C. Noel Bairey Merz, M.D., holds the Women’s Guild Endowed Chair in Women’s Health, and is Director of the Women’s Heart Center as well as the Preventive and Rehabilitative Cardiac Center at Cedars-Sinai Medical Center. She also is Professor of Medicine at Cedars-Sinai. Dr. Bairey Merz received her bachelor’s degree from the University of Chicago and her medical degree from Harvard University. She completed her residency at the University of California, San Francisco, where she served as Chief Medical Resident. Dr. Bairey Merz also completed fellowships in clinical cardiology and nuclear cardiology at Cedars-Sinai Medical Center. Dr. Bairey Merz’s research interests include women and heart disease, mental stress and heart disease, the role of exercise and stress management in reversing disease, and the role of nutrition in heart disease. Currently, she is chair of the National Institutes of Health (NIH)-sponsored WISE (Women’s Ischemic Syndrome Evaluation) initiative, which is investigating potential methods for more effective diagnosis and evaluation of coronary artery disease in women. Dr. Bairey Merz has received investigational grants from the NIH-National Heart, Lung and Blood Institute (NHLBI), NIH-National Center for Alternative and Complementary Medicine (NCCAM), the Pfeiffer Foundation, The Eli and Edythe Broad Foundation, The Barbra Streisand Foundation, and the Women’s Guild.

Tracy Bale, Ph.D., holds a dual appointment at Penn and is an Associate Professor of Neuroscience in the Department of Animal Biology at Penn Vet as well as Associate Professor of Neuroscience in the Department of Psychiatry at Penn’s School of Medicine. Dr. Bale earned her Ph.D. in pharmacology and neurobiology from the University of Washington, and completed her postdoctoral training with Dr. Wylie W. Vale at the Salk Institute in La Jolla, CA. Her research interests are centered on the role of stress dysregulation in disease, and the sex differences that underlie disease vulnerability. Her lab has developed mouse models relevant to neuropsychiatric diseases and obesity, and studies the interaction of genes and the environment, assessing epigenetic mechanisms involved in sex-specific programming of stress pathways in the brain.

Gregory F. Ball, Ph.D., Vice Dean for Science and Research Infrastructure, is a Professor of Psychological and Brain Sciences in the School of Arts and Sciences at Johns Hopkins University. As Vice Dean Ball serves as liaison with the chairs of the school’s natural science departments. Ball has been faculty member at Hopkins since 1991. He heads the program committee of the undergraduate neuroscience program. Ball holds joint appointments in the Department of Biochemistry and Molecular Biology, Division of Reproductive Biology, at the Bloomberg School of Public Health, and in the Department of Neuroscience at the School of Medicine. He has amassed more than 200 research publications. His work concerns interrelationships among steroid hormones, the brain, and reproductive behavior. Ball earned a BA in psychology from Columbia University and a PhD in psychobiology from the Institute of Animal Behavior at Rutgers University. He did his postdoctoral work at Rockefeller University.

Debra A. Bangasser, Ph.D., received her B.A. in Psychology from San Diego State University and her Ph.D. in Biopsychology and Behavioral Neuroscience from Rutgers University. Dr. Bangasser is a postdoctoral fellow at the Children’s Hospital of Philadelphia and will join Temple University in the fall of 2012 as an Assistant Professor of Psychology and member of the Neuroscience Program. She is the recipient of a number of awards including the Julius Axelrod Travel Award and Young Investigator Awards from the American College of Neuropsychopharmacology, Workshop on Steroid Hormones and Brain Function, and Gordon Research Conference on Catecholamines. Her research focuses on neurobiological mechanisms that mediate vulnerability to stress and stress-related mental illnesses, particularly in females.

Jill B. Becker, Ph.D., received her B.A. and M.A. in Human Development from the University of Kansas, and her Ph.D. in Neuroscience from the University of Illinois. She did Post-Doctoral Research at the University of Michigan before joining the faculty in the Department of Psychology. She is now the Patricia Y. Gurin Collegiate Professor in Psy-
OraLee Branch, Ph.D., received her Ph.D. in population biology of infectious disease at Emory University. She did postdoctoral research at NIH, National Center for Biotechnology Information, focusing on epidemiology and computational biology. Now, she is an assistant professor at New York University School of Medicine, and leads the Malaria Immunology and Genetics Amazon project. She developed and continues a longitudinal cohort study in Peru with 8 years of NIH and other grant funding. She studies the development of immunity to malaria, population biology of malaria parasites and host-parasite selection. She has a study on inflammatory infections throughout pregnancy and the impact of inflammation during pregnancy on the delivered infant’s birth outcome, and the infant’s microbiome, nutrition and growth over the next 24 years of life. Her results suggest that males and females have different responses to and after infection which impacts infection and possibly is associated with longer-term sex-specific outcomes.

Anne M. Comi, M.D., received her B.A. in Biology from the College of the Holy Cross and her M.D. from the State University of New York at Buffalo. She received her pediatric residency training at the Children’s Hospital of Buffalo and Pediatric Neurology residency training at Johns Hopkins Hospital. She did postdoctoral research training at Johns Hopkins University and is currently an Associate Professor in the Departments of Neurology and Pediatrics at the Johns Hopkins School of Medicine. Her clinical expertise is in Sturge-Weber syndrome and ischemic injury and seizures in the immature brain. Her laboratory research focuses on post stroke neurogenesis and regeneration; current experiments are determining the differential neurogenic and glial responses to cord blood stem cells in a mouse model of stroke in the immature brain.

Elizabeth Connick, M.D., is a physician-scientist whose research focuses on HIV immunopathogenesis. She graduated from Harvard Medical School in 1988, and performed a medicine residency at Columbia Presbyterian Medical Center and an infectious disease fellowship at University of Colorado. She is currently a Professor of Medicine in the Division of Infectious Diseases at the University of Colorado Denver. She has been involved in clinical trials as well as laboratory-based translational research studies of HIV-1 infection for the past 18 years including studies of immune reconstitution and acute HIV infection. More recently, she has developed an interest in understanding sex differences in HIV pathogenesis. She has served on the Office of AIDS Research advisory committee to identify priorities for the Women and Girls component of the Trans-NIH Plan for HIV-Related Research since 2008 and the Antiviral Drug Advisory Committee for the FDA since 2011.

Michael Blaise Cook, Ph.D., earned his B.Sc. in Genetics at the University of Nottingham, England, and, subsequently, a Ph.D. in Epidemiology at the University of Leeds, England. The focus of his doctoral thesis was sex differences in Barrett’s esophagus and esophageal adenocarcinoma, themes still relevant to his current research portfolio in the Hormonal and Reproductive Epidemiology Branch (HREB). Dr. Cook joined the HREB as a Visiting Postdoctoral Fellow in 2007 before becoming a Research Fellow in 2008 and then an Investigator in 2011. He was awarded the Division of Cancer Epidemiology and Genetics (DCEG) Fellowship Achievement Award for research excellence in 2008, the Director’s Intramural Innovation Award in 2008, and the DCEG Molecular Epidemiology Course Award for novel research proposals. He is a member of the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON) and a Steering Group Committee member of the Asian Barrett’s esophagus Consortium (ABC). Dr. Cook is a strong proponent of high-quality mentorship and he recently completed the NCI Executive Coaching program. Dr. Cook is interested in the epidemiology of esophageal adenocarcinoma and the precursor metaplasia, Barrett’s esophagus. In addition, he is interested in the etiology of genitourinary neoplasms (testicular and prostate) and sex differences in cancer pathogenesis.

Gillian Einstein, Ph.D., received her BA in Art History from Harvard University and her PhD in Neuroanatomy from the University of Pennsylvania. After doing research in vision as well as Alzheimer disease at Duke University, and science administration at the National Institutes of Health, she immigrated to Canada where she is currently an Associate Professor of Psychology at the University of Toronto. Her research is on the effects of estrogens and culture on women’s biologies. She has edited and annotated a book for MIT Press on foundational papers in Hor-
mones and Behaviour called “Sex and the Brain.” She is also the founder and current director of the Collaborative Graduate Program in Women’s Health and a founding member of the O SSD. Currently a councilor and the chair of the education committee, she is also an advisory board member of the Institute of Gender and Health of the Canadian Institutes of Health Research.

Susan E. Fahrbach, Ph.D., received her B.A. in Psychology from the University of Pennsylvania, an M.A. in PPP (Psychology, Philosophy, and Physiology) from the University of Oxford, and her Ph.D. in Neurobiology from the Rockefeller University. Dr. Fahrbach did postdoctoral training at the University of Washington and is Reynolds Professor of Developmental Neuroscience in the Department of Biology at Wake Forest University. She is author of numerous articles and reviews, and currently serves on the editorial boards of the journals Hormones and Behavior, Journal of Comparative Neurology, Arthropod Structure and Function, and Apidologie. Her research focuses on structure-function relationships in the brains of social insects, with an emphasis on the role of nuclear receptors in regulation of adult brain structure by experience and ecdysteroids.

Professor Dov Feldberg, M.D., graduated from the Medical School of Hadassah-Jerusalem University in 1971. He did his fellowship in reproductive medicine in 1984-1985 at the Yale New Haven Hospital with Professor Alan DeCherney and Professor Fred Naftolin. In 1985, he established the fourth IVF Unit in Israel, at the Rabin Medical Center, heading it until 1996. He did his sabbatical in Reproductive Medicine in 1990-1991 at the Center for Reproductive Medicine, Cornell University Hospital, New York, with Professor Zev Rosenwaks. In 1993, he received a Professor degree at the division of OB/GYN Medical School at Tel-Aviv University. In 1994 he was appointed Vice Chairman of OB/GYN Division, Rabin Medical Center. In 2001, Dr. Feldberg was appointed Acting Chairman OB/GYN Division, Rabin Medical Center. He has served as the Executive Vice President of the World Association of Reproductive Medicine (WARM) since 2008. In addition to more than 120 publications in the field of reproductive medicine, Dr. Feldberg has contributed to several chapters in books. He has participated in the organization of many national and international meetings.

James G. Fox, D.V.M., is a Professor and Director of the Division of Comparative Medicine and a Professor in the Department of Biological Engineering at the Massachusetts Institute of Technology. He is also an Adjunct Professor at Tufts University School of Veterinary Medicine and the University of Pennsylvania, School of Veterinary Medicine. Professor Fox is the author of over 530 articles, 80 chapters, 4 patents and has edited and authored 13 texts in the field of in vivo model development and comparative medicine. Dr. Fox has received numerous scientific awards, and was elected to the Institute of Medicine of the National Academy of Sciences in 2004. He studies the role of Helicobacter sp. induced gastrointestinal cancers. His past and current research has been funded by NIH and NCI, as well as by private industrial sources, for the past 35 years.

Marek Glezerman, M.D., is full professor of obstetrics and gynecology and the Emma Fejman Chair of obstetrics and gynecology at Tel Aviv University. He has chaired the departments of obstetrics and gynecology at three major health care centers in Israel. He has studied medicine in Frankfurt and Paris, has done fellowships and sabbaticals in Munich, Giessen, Chicago, Montreal and at the Weizmann Institute for Science in Israel. He serves on numerous national and international professional and academic committees and editorial boards and is past-president of the Israel Fertility Association. He is president of the International Society for Gender Medicine and founding president of the Israel Society of Gender Medicine and member of two National Councils at the Israel Ministry of and on the FIGO advisory boards for Andrology and Gyne-Oncology. He has written/edited 4 books and published more than 330 chapters in obstetric and gynecologic texts and articles in professional journals.

Daniel A. Gorelick, Ph.D., received his B.A. in music from the University of Pennsylvania and his Ph.D. in cellular and molecular medicine from the Johns Hopkins University School of Medicine. Dr. Gorelick did postdoctoral training in developmental biology and genetics at the Carnegie Institution for Science and was an AAAS Science & Technology Policy Fellow at the U.S. Department of State. His research focuses on differences in estrogen receptor activation in males and females and on how endocrine disrupting compounds influence development.

Maria Grazia Modena, M.D., F.A.C.C., F.E.S.C., is a full Professor of Cardiology at University of Modena Reggio Emilia since 1994. She was president of Italian Society of Echocardiography, President of the Italian Society of Cardiology, Chairman of the Committee of the “Women in Cardiology” European Society of Cardiology and Member of the Steering Committee of XIENCE V SPIRIT WOMEN Study. She received a number of awards, as the “Premio Bellissario” for Medicine, and several research grants. In 1996 she founded the “BenEssere Donna” Center, Women’s Clinic, for the study of epidemiology, prevention, diagnosis and treatment of postmenopausal related disorders,
with particular attention to cardiovascular aspects. Her main fields of interest are Cardiovascular Disease in Women and Study of Endothelial Dysfunction. She is well recognized for her researches on the study of the cardiovascular risk factors, especially on the interaction between Diabetes and Hypertension in Postmenopausal Women.

Christopher Gregg, Ph.D., received his BSc. in Biochemistry from the University of Lethbridge and his PhD. in Neuroscience from the University of Calgary. Dr. Gregg did postdoctoral training with Prof. Catherine Dulac at Harvard University and is currently a New York Stem Cell Foundation-Robertson Investigator and Assistant Professor in the Department of Neurobiology & Anatomy at the University of Utah. He is the recipient of several awards, including the Eppendorf & Science Prize in Neurobiology. His work focuses on maternal and paternal effects influencing brain development and function and in the regulation of feeding and motivated behaviors in males and females.

David A. Hart, Ph.D., received his Ph.D. in Biochemistry from Michigan State University, and subsequently post-doctoral research in immunology at the University of Illinois Medical Center. After a number of faculty appointments, he has been most recently a Professor in the McCaig Institute for Bone and Joint Health at the University of Calgary, and the Centre for Hip Health and Mobility at UBC in Vancouver. Dr. Hart’s research has focused on sex/gender differences in normal and injured connective tissues, and the healing/repair processes. He has chaired the Institute Advisory Board for the Institute for Gender & Health at the Canadian Institutes for Health Research, and has been a member of the SWHR ISIS Network in MSK. Dr. Hart was elected to the Canadian Academy of Health Sciences in 2008.

Lorena M. Havill, Ph.D., is an Associate Professor in the Department of Genetics at the Texas Biomedical Research Institute. Dr. Havill’s research program centers on identification of genetic and other factors that underlie variation in susceptibility to onset and progression of aging-related skeletal diseases (i.e. osteoarthritis and osteoporosis) and changes in bone metabolism. She is particularly interested in sex-based differences in skeletal disease susceptibility. She is the recipient of several Young Investigator Awards from the American Society for Bone and Mineral Research and the Voelcker Fund.

Melissa Hines, Ph.D., received her BA in Psychology from Princeton University and her PhD in Psychology from the University of California, Los Angeles (UCLA). She was a Postdoctoral Fellow in the Laboratory of Neuroendocrinology at UCLA, and a Visiting Scientist at the University of Wisconsin Primate Research Centre, before taking a post as Assistant, then Associate Professor in Psychiatry and Biobehavioral Sciences at UCLA. She is now Professor of Psychology at the University of Cambridge, where she directs the Hormones and Behaviour Research Laboratory. She is past president of the International Academy of Sex Research, and the author of the book *Brain Gender* as well as over 100 other scientific publications. Her research interest is in gender development, and she is currently exploring how inborn predispositions to gender typicality, or atypicality, particularly those caused by testosterone prenatally, act together with postnatal experience to shape gender development.

Georgia E. Hodes, Ph.D., received her B.A. from Bard College and her Ph.D. from Rutgers University in the Behavioral Neuroscience division of the Psychology program. At Rutgers, she trained with Dr. Tracey Shors to examine sex differences in the effects of stress on cognition and hippocampal plasticity across the lifespan. Dr. Hodes began her post-doctoral training with Dr Irwin Lucki at the University of Pennsylvania examining the contribution of neurogenesis and neurotrophin mobilization to strain and sex differences in vulnerability to stress. In 2010, Dr. Hodes joined the laboratory of Dr. Scott Russo as a post-doctoral fellow. Her work in Dr. Russo’s laboratory focuses on molecular mechanisms of individual differences in susceptibility and resiliency to stress. Her future interests include examining the molecular substrates directing the functional contribution of hormones and cytokines to the onset, symptoms and generational transmission of depression in both sexes.

Johnny Huard, Ph.D., currently serves as the Director of the Stem Cell Research Center (SCRC). Research at the SCRC includes: 1) Duchenne muscular dystrophy (DMD), 2) Critical sized long bone and cranial bone injuries, 3) Acutely injured articular cartilage and articular cartilage damaged by osteoarthritis, 4) Compartment syndrome injured limbs which involve injury to the muscles, nerves, circulatory and lymphatic system vasculature, etc. 5) Infarct injured hearts and cardiomyopathy due to DMD. Dr. Huard’s studies have been used clinically for the treatment of urinary incontinence and myocardial infarction. He has authored over 200 peer reviewed articles and 76 review articles, invited papers and book chapters. In 2003, Dr. Huard received the Orthopedic Society’s prestigious Kappa Delta Award and the University of Pittsburgh’s Chancellor’s Distinguished Research Award. Dr. Huard was honored in 2007 with the Prix d’excellence award in recognition of his outstanding scientific achievements, from his alma mater. Dr. Huard’s research program is funded by a variety of sources including the National Institutes of Health, the Muscular
Dystrophy Association, the Department of Defense, as well as other private and public foundations. He serves as a standing member of the Skeletal Muscle and Exercise Physiology Study section for the NIH. Dr. Huard currently serves on multiple editorial boards for scientific journals and reviews numerous scientific papers for a wide variety of scientific journals.

Marjorie Jenkins, M.D., transitioned from a private practice to academic medicine in 2001 and is a Professor of Medicine in Texas Tech University Health Sciences Center (TTUHSC) Division of Women’s Health and Gender-Specific Medicine. She is the founding executive director and chief scientific officer of the TTUHSC Laura W. Bush Institute for Women’s Health and the (former) founding director of the TTUHSC Center for Women’s Health and Gender-Based Medicine. She also serves as the Associate Dean for Women in Health and Science and holds the Mrs. Avery “Janie” Rush Endowed Chair of Excellence in Women’s Health and Oncology at TTUHSC. Her current research and scholarship efforts are directed toward ovarian cancer, menopause, postmenopausal sexual function and integrating sex and gender differences into medical and pharmacy curricula. She initiated the development and is a lead faculty for the current TTUHSC SOM project, “Development of an Integrated Longitudinal Sex and Gender-Specific Curriculum.”

Michael Karin, M.D., received his BSc in Biology in 1975 at Tel Aviv University, Israel and his PhD in Molecular Biology in 1979, at the University of California, Los Angeles. Dr. Karin joined the laboratory of Dr. Beatrice Mintz at the Fox Chase Cancer Center as a postdoctoral fellow. After completing a second, short, postdoctoral fellowship with Dr. John Baxter at the Departments of Medicine and Biochemistry at the University of California San Francisco (UCSF), Dr. Karin undertook his first faculty appointment as an Assistant Professor at the Department of Microbiology at the University of Southern California (USC), School of Medicine, Los Angeles. In 1986, Dr. Karin accepted an Associate Professor position at the Department of Medicine at the University of California San Diego (UCSD), School of Medicine and in 1989 was promoted to a full Professor at the Department of Pharmacology, UCSD School of Medicine, where he has been ever since. Dr. Karin is leading authority on cell signaling, inflammation biology and cancer. His work has been recognized by numerous honors and awards, including the Oppenheimer Award for Excellence in Research from the Endocrine Society (1990), MERIT Award from the NIH/NIEHS (1998), Frank and Else Schilling-American Cancer Society Research Professorship (1999), C.E.R.I.E.S. Research Award for Skin Physiology (2000), Honorary Doctoral Degree, Technical University Munich (2010) and the Harvey Prize in Human Health (2010). In 2005, Dr. Karin was elected to the National Academy of Sciences, USA; in 2007 he became a Foreign Associate of the European Molecular Biology Organization (EMBO); and in 2011 he was elected to the Institute of Medicine.

Alexandra Kautzky-Willer, M.D., is Professor of Gender Medicine at Medical University in Vienna where she heads the Gender Medicine Unit and the University Course of Gender Medicine. She has specialized in Internal Medicine and in Endocrinology and Metabolism. She is board member of numerous medical and scientific associations, among these, the Austrian Associations for Diabetes, Gender Medicine, and Obesity. She is a member of the European (DPSG) and International Diabetes Pregnancy Study Groups and scientific consultant of national and international Medical-Scientific Funds. She serves as reviewer in leading journals and has received several awards such as the Joseph Hoet Research Award 2004. She has published 96 original papers, numerous reviews, book chapters, Guidelines/Practical Recommendations, and Audit Reports. Special research interests are sex- and gender based aspects of obesity, the metabolic syndrome, diabetes and cardiovascular disease including pregnancy and fetal programming.

Ineke Klinge, Ph.D., received her doctoral training in biomedicine (specialization Immunology) from the Free University in Amsterdam and her PhD from Utrecht University, where she also specialized in gender research. She is currently associate professor of Gender Medicine at Maastricht University. Her past and current research for the European Commission focuses on innovation of biomedical and health research by incorporation of sex and gender aspects. The project GenderBasic (2005-2008) that she coordinated was elected by the European Commission as a FP6 success story. During winter semester 2008-2009 she was appointed as Maria-Goeppert-Mayer guest professor in Gender Medicine at the Georg-August-University in Göttingen, Germany. In 2010, with Claudia Wiesemann she published the book Sex and Gender in Biomedicine. Theories, Methodologies, Results. She is currently co-director of the EU Expert group Innovation through Gender that develops methods of sex and gender analysis for basic and applied research (Gendered Innovations).

Marianne J. Legato, M.D., F.A.C.P., is an internationally known expert in gender-specific medicine, the science of how normal human function and the experience of disease are impacted by biological sex/gender. She is Professor of Clinical Medicine at Columbia University and Adjunct Professor of
Medicine at Johns Hopkins. In 1997 she founded and continues to direct the Partnership for Gender-Specific Medicine at Columbia University. In 2006 she established the Foundation for Gender-Specific Medicine, a nonprofit organization that raises awareness of gender-specific medicine in professional and lay communities world-wide. Grants from both organizations are currently supporting gender-specific research at both Columbia and Johns Hopkins. Dr. Legato founded the indexed journal, Gender Medicine and edited the first medical text of its kind, the Principles of Gender-Specific Medicine (Academic Press, 2004; second edition, 2009). She has written 5 books for the public; most recently, Why Men Die First (Palgrave, 2008).

Svetomir N. Markovic, M.D., Ph.D., is a consultant in the Division of Hematology, Department of Internal Medicine, the Division of Medical Oncology, Department of Oncology, and the Department of Immunology at Mayo Clinic Rochester. He holds the academic rank of Professor of Medicine and Oncology and Associate Professor of Immunology. He is recognized with the distinction as the Charles E. Mathy Professor in Melanoma Research. Dr. Markovic is the Chair of the Melanoma Disease Oriented Group of the Mayo Clinic Cancer Center as well as the Chair of the Midwest Melanoma Partnership. His research is focused on understanding opportunities for integration of different systemic treatment modalities into more effective therapy for advanced melanoma.

Margaret (Peg) McCarthy, Ph.D., received a B.A. and an M.A. in Biology from the University of Missouri - Columbia and a Ph.D. from the Institute of Animal Behavior at Rutgers University, Newark NJ. She received postdoctoral training at Rockefeller University from 1989 to 1992 in the Laboratory of Dr. Donald Pfaff and one year at NIH as a National Research Council Fellow. Peg joined the faculty of the University of Maryland School of Medicine in 1993 and is currently a Professor in the Departments of Physiology and Psychiatry and Chair of the Department of Pharmacology. She was the Director of Graduate Education for the Program in Neuroscience for three years and the Associate Dean for Graduate Studies from 2005 – 2011. She has received numerous awards and recognition for her mentoring of graduate students. Dr. McCarthy has a long standing interest in the cellular mechanisms establishing sex differences in the brain. Dr. McCarthy has published over 120 peer-reviewed manuscripts on these topics and her research has been continuously funded by the NIH since 1994. She is currently an Editor at Endocrinology and Associate Editor at the Journal of Neuroscience. She is former Associate Editor of Hormones and Behavior, past Secretary of the Society for Behavioral Neuroendocrinology, current Councillor in the Organization for the Study of Sex Differences and was named one of Maryland’s Top 100 Women in 2009.

Thomas A. Mellman, M.D., (Director, Clinical and Translational Research and Stress and Sleep Studies and Professor of Psychiatry at Howard University College of Medicine) Dr. Mellman is the principal investigator at Howard for the CTSA supported Georgetown Howard Universities Center for Clinical Translational Science as well as an RO1 from NHLBI and has been the principal investigator on multiple other research and a Mid-career Investigator Award in Patient Oriented Research. Much of his research and publications have addressed the role of sleep disturbance in the pathogenesis and treatment of PTSD. This included studies that included sleep recordings in the aftermath of traumatic injuries and more recently the impact of PTSD and sleep disturbance on health disparities.

Istvan Merchenthaler, M.D., Ph.D., D.Sc., received his M.D. degree from the University of Pecs, Hungary and his Ph.D. and D.Sc. degrees from the Hungarian Academy of Sciences. His research interests include (i) to develop novel, safe, central nervous system (CNS)-selective estrogen replacement therapy free of side effects in the periphery to alleviate menopausal symptoms (hot flushes, depression, sleep disturbances, and dementia) by utilizing a pro-drug approach and (ii) to improve fertility, prevent chromosomal aneuploidy, and delay neurodegeneration in older women by lowering gonadotropin hormone levels. Currently, he is funded by two RO1 and one R21 grants. He has published 170 peer-reviewed scientific articles. Besides conducting research, he teaches Human Gross Anatomy and Histology to medical students and is the course master of Neuroendocrinology and Biology of Aging in the G PiLS program and he is the Director of the BIRCWH K-12 program at UMB.

William Moss, M.D., M.P.H., received his medical degree from Columbia University College of Physicians and Surgeons and his M.P.H. from the Columbia University Mailman School of Public Health. Dr. Moss completed his residency and chief residency in pediatrics at Babies Hospital, Columbia-Presbyterian Medical Center, and his fellowship in Pediatric Infectious Diseases at the Johns Hopkins Hospital. He is an Associate Professor in the Departments of Epidemiology, International Health and Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. His broad research interests are the epidemiology and control of childhood infections in resource-poor countries, with a primary interest in understanding the impact of the HIV epidemic on measles control and eradication. Areas of current research include the impact of antiretroviral therapy on measles
immunity, the care and treatment of HIV-infected children in rural sub-Saharan Africa, and the epidemiology and control of malaria in southern Africa.

Mary I. O’Connor, M.D., is Chair of the Department of Orthopedic Surgery at the Mayo Clinic in Florida, Associate Professor of Orthopedics at the Mayo Clinic College of Medicine and member of the Florida Executive Operations Team. She is the current President of the Association of Bone and Joint Surgeons and past president of the American Association of Hip and Knee Surgeons and the International Society of Limb Salvage. She has an active clinical practice focusing on surgical treatment of arthritis of the hip and knee joint and salvage of the limb in the treatment of bone and soft tissue sarcoma. She has published on gender differences in outcomes of knee replacement surgery and chaired research and advocacy symposia related to musculoskeletal healthcare disparities. She is a member of the Society for Women’s Health ISIS network and was recently awarded a grant by the Society to study potential sex difference in knee osteoarthritis.

Pamela Ouyang, M.B.B.S., received her medical degree from St. Bartholomew’s College of Medicine, University of London, UK. She did her residency training in Internal Medicine at Johns Hopkins Hospital, where she also completed Cardiology Fellowship. She has been on the cardiology faculty at Johns Hopkins Bayview Medical Center and is Professor of Medicine at Johns Hopkins University. Dr. Ouyang’s research focuses on risk factors for ischemic heart disease, cardiovascular disease in women, and clinical trials in cardiology.

Douglas Portman, Ph.D., received his B.A. in Biochemistry and Ph.D. in Molecular Biology and Genetics, both from the University of Pennsylvania. With a background in molecular cell biology, Dr. Portman began work on C. elegans genetics as a postdoc with Scott Emmons, Ph.D., at the Albert Einstein College of Medicine. He joined the faculty of the University of Rochester in 2003 and is currently Associate Professor of Biomedical Genetics in the Center for Neural Development and Disease. His research focuses on the genetic control of sex differences in neural development and behavior in the C. elegans, with a particular interest in using this model to gain insight into the biological mechanisms that underlie sex differences in human neuropsychiatric disorders, including autism. More information about his laboratory’s research can be found at <wormweb.urmc.rochester.edu>.

Ann M. Rasmusson, M.D., is an affiliate of the Veterans Administration National Center for PTSD Women’s Health Science Division, an Associate Professor of Psychiatry at Boston University School of Medicine, and Psychiatry Liaison for PTSD Research and Education at the VA Boston Healthcare System. Her research has focused on the neuroendocrinology of PTSD and PTSD-comorbid medical and other psychiatric disorders such as metabolic syndrome, depression, and nicotine dependence, as well as the development of new PTSD therapeutics. Current funded projects are focused on sex differences in the regulation of neuroactive steroids in PTSD, neurobiological predictors of relapse to tobacco use and response to cognitive processing therapy in PTSD, and the role of deficits in GABAergic neuroactive steroids in the shared risk for PTSD, traumatic brain injury, depression, and chronic pain. She is also Co-Lead for a multisite DOD-sponsored trial of ganaxolone, a synthetic GABAergic neuroactive steroid, for PTSD.

Vera Regitz-Zagrosek, M.D., received her medical degree from Saarland University and undertook post-doctoral training at the Max-Planck-Institute for Experimental Cardiology and University of Madison. She founded the Institute of Gender in Medicine at Charite University Hospital, the Cardiovascular Disease in Women Working Group (German Cardiac Society DGK), the German and International Societies for Gender in Medicine. She coordinates the BMBF-sponsored project “Gender Medicine” and the Berlin site in the German Centre for Cardiovascular Research (DZHK), two DFG-funded collaborative consortia and the ERASMUS project EUGIM. She is Task Force Leader of the Guidelines “Cardiovascular Diseases in Pregnancy” of the European Society of Cardiology.

Kerry Ressler, M.D., Ph.D., received his medical and doctoral degrees from Harvard Medical School, studying the molecular basis of olfaction as Linda Buck’s first graduate student. His work at Emory University focuses on mechanisms of fear in mice and humans. He has received numerous awards, including being named an HHMI Investigator, the Freedman Award in Basic Science (NARSAD), the Killiam Award for Translational Research (ACNP), and the Laufier award for Scientific Achievement (ISTSS). He is Principal Investigator (PI) on 2 R01 grants and an RC1 Challenge Grant to understand translational, genetic and psychological risk factors for PTSD. He is a past member of the VA Merit study section for genetics of PTSD and mental health grants, and a current member of the NIH CSR Learning and Memory (LAM) study section. His work in sex differences is relatively recent, after identification of gene pathways which appear to differentially mediate PTSD in a sex- and hormone-specific manner.
Karlin Schenck-Gustafsson, M.D., Ph.D., F.E.S.C., is the director and founder of the Centre for Gender Medicine, Department of Medicine, Karolinska Institutet. She is a professor of cardiology and chief consultant of cardiology at the Karolinska University Hospital. From 2007-2009 Dr. Schenck-Gustafsson served as the President of IGM and in 2010 she was the editor in chief of the International Handbook of Gender Medicine. International Awards include Athena Award for M of C btw Kl and Columbia (2004) and Florio Maseri Award for Gender in Cardiology (2009).

Jaclyn M. Schwarz, Ph.D., received her B.A. in Psychology from Boston College and her Ph.D. in Neuroscience from the University of Maryland, Baltimore. Her Ph.D. examined the sexual differentiation of the developing rodent brain with a special focus on understanding the estradiol-mediated development of glumatergic synapses in the neonatal hypothalamus. She is currently a postdoctoral fellow at Duke University studying the early-life factors which influence the development and function of the neuroimmune system, and how this might influence an individual’s later life risk or resilience to certain mental health disorders. She has received numerous awards, including the Florence P. Haseltine Award at the first annual meeting for the OSSD in 2007, as well as a pre- and a post-doctoral National Research Service Award from the NIH for her research.

Zena Sharm an, Ph.D., is the Vancouver-based Assistant Director of the Institute of Gender and Health (IGH), one of 13 Institutes that comprise the Canadian Institutes of Health Research (CIHR), Canada’s national health research funding agency. IGH’s mission is to foster research excellence regarding the influence of gender and sex on the health of women and men throughout life and to apply these research findings to identify and address pressing health challenges. Dr. Sharm an has a PhD in Interdisciplinary Studies from the University of British Columbia (2010). Her program of research focuses on gender and health care work. She is the co-editor (with Ivan E. Coyote) of Persistence: All Ways Butch and Femme (Arsenal Pulp Press, 2011), the first Canadian anthology of its kind on queer sexualities and genders.

Kathleen A. Sluka, Ph.D., P.T., received her physical therapy degree from Georgia State University and her Ph.D. from University of Texas Medical Branch in Anatomy. She did a Postdoctoral fellowship in Neuroscience at the University of Texas in Galveston. She is currently a full professor at the University of Iowa in the Physical Therapy and Rehabilitation Science Graduate Program in the College of Medicine, the Neuroscience Graduate Program, the Pain Research Program and the College of Nursing. Her research focuses on the mechanisms underlying chronic musculoskeletal pain in animal models and translation of these mechanisms to clinical pain populations. She has published over 120 manuscripts, numerous book chapter, and is a regular invited speaker world-wide. She has won numerous awards for her research including the prestigious Frederick W.L. Kerr Basic Science Research Award from the American Pain Society and the Marian Williams Award for research in physical therapy from the American Physical Therapy Association.

Amy E. Street, Ph.D., received her Ph.D. in Clinical Psychology from the University of Georgia in 1998. Dr. Street is clinical psychologist affiliated with the Women’s Health Sciences Division of the National Center for PTSD and an Associate Professor of Psychiatry at Boston University School of Medicine. She also serves as the Director of the Education and Training Division of the Department of Veterans Affairs Office of Mental Health Services’ National Military Sexual Trauma Support Team, a national policy, education and training resource team focusing on the treatment of Veterans who experienced sexual harassment or sexual assault during their military service. Dr. Street has an active program of research investigating negative health outcomes associated with interpersonal trauma, including sexual harassment, sexual assault and intimate partner violence, in veteran and civilian populations. Her research has received funding from the Department of Veterans Affairs and the National Institutes of Health.

Anna Thorson, M.D., Ph.D., M.P.H., is an Associate Professor and research group leader at the Division of Global Health at Karolinska Institutet, Sweden. She is also a clinical specialist at the Infectious Disease Clinic at the Karolinska University Hospital. She holds a Diploma in Tropical Medicine and Health, a Masters in Public Health and a Ph.D. in International Health, from Karolinska Institutet. Her Ph.D. thesis comprised field studies in Vietnam, of Tuberculosis from a gender perspective. Her current main research focus is HIV/AIDS and TB epidemiology, including health system research (gender, access to care and treatment delivery of TB and HIV/AIDS medication), determinants of sexual HIV transmission and prevention of HIV. She currently works in collaborative research projects in Tanzania, Burkina Faso, Uganda, South Africa, Kenya and Vietnam. She has been an expert consultant to the WHO, comprising work on gender aspects of HIV/AIDS and Tuberculosis in Central Asia and Eastern Europe.

Dawne Vogt, Ph.D., received her Ph.D. in Experimental Psychology from Northeastern University and is currently a Research Psy-
psychologist in the Women’s Health Sciences Division of the National Center for PTSD, VA Boston Healthcare System, and Associate Professor of Psychiatry at Boston University School of Medicine. Dr. Vogt has published extensively in the deployment stress literature and has focused much of her recent research on gender differences in deployment risk and resilience factors as they relate to mental health. She has received awards including an NIMH research fellowship and the Walter G. Klopfer Award for distinguished contribution to the literature in personality assessment. She is also involved in the research training of predoctoral and postdoctoral trainees and serves on numerous local and national committees in her field. She has additional research interests in stressors unique to women in the military and stigma as a barrier to mental health treatment.

Joanna Wilson, M.D., received her B.S. from the University of Michigan, Ann Arbor and Doctorate of Osteopathy from The University of North Texas, Fort Worth. She completed her residency at UT Southwestern/St. Paul, Dallas in Internal Medicine. She is board-certified in Internal Medicine, and is a Certified Clinical Densitometrist and a NAMS Certified Menopause Practitioner. She is currently an Associate Professor at Texas Tech, Amarillo. She is the Division Chief of Women’s Health and Gender-specific Medicine. She is the recipient of a number of awards, including Texas Tech President’s Outstanding Clinician Award, Texas Tech Dean’s Outstanding Leadership Award, and Haven Health Clinic Community Service Award. Her clinical practice focuses on women’s primary care and outpatient gynecology. Dr. Wilson’s interest in medical curriculum development to include gender differences is focused on delivery methods of evidence-based medicine to faculty.
PRESIDENTIAL SYMPOSIUM: SEX DIFFERENCES IN FETAL PROGRAMMING

Prenatal testosterone and human neurobehavioral development: Outcomes and mechanisms

Melissa Hines Ph.D., University of Cambridge

Thousands of experiments in non-human species indicate that exposure to testosterone prenatally or neonatally has enduring influences on behavior, increasing male-typical characteristics and decreasing female-typical characteristics. Testosterone also influences the development of the mammalian brain, affecting programmed cell death, anatomical connectivity and neurochemical specification, and these neural changes during early development are thought to explain the behavioural changes.

Testosterone also appears to influence human behavioural development in a manner similar to that documented in other species. Many behaviours that differ on the average for males and females, including childhood toy and activity interests, sexual orientation, gender identification, personality characteristics, and sex-related cognitive abilities, have been linked to levels of testosterone during early development. Much of this evidence has come from studies of individuals exposed to high levels of testosterone and other androgens prenatally, because of the autosomal recessive disorder, congenital adrenal hyperplasia (CAH). For example, numerous studies have found that girls with CAH show increased male-typical, and reduced female-typical, toy and activity preferences. In addition, testosterone measured in maternal blood during pregnancy, or in amniotic fluid during gestation, predicts male-typical childhood play behaviour in typically-developing children. Non-human primates also show sex-typed toy interests, similar to those seen in children, suggesting an inborn, probably hormonal, contribution to these sex differences in object preferences. Although the strongest evidence linking prenatal testosterone exposure to human behaviour has come from studies of children’s sex-typed play, substantial evidence also links early testosterone exposure to sexual orientation and to core gender identity, and there is some evidence linking such hormone exposure to aggressive behavior, to empathy, and to targeting ability.

For human behaviors that show sex differences, other factors, including socialization, play a role too, however, and the magnitude of this role appears to vary across behavioral outcomes. In addition, and in contrast to other species, the acquisition of sex-typical behavior in humans involves social-cognitive mechanisms related to gender identification. This presentation will suggest that these social-cognitive mechanisms could be involved in the chain of events linking early testosterone exposure to subsequent sexually differentiated behavior.

Prenatal programming of stress dysregulation: epigenetic and placental contributions

Tracy L. Bale, Ph.D., University of Pennsylvania, Philadelphia, PA

Sex-biased neurodevelopmental disorders, including autism and schizophrenia, have been associated with fetal antecedents such as maternal stress. The mechanisms and transgenerational programming of offspring outcomes through which stress contributes to disease development are not well understood, though likely involve a complex interaction between the maternal environment and effects on the placenta. We have identified a sensitive period of early gestation where maternal stress has sex-dependent epigenetic programming effects on offspring pathway neurodevelopment. Male offspring show increased stress sensitivity as adults in behavioral and physiological measures including tests assessing cognitive performance and stress coping strategies. These males also show physiological features of dysmasculinization including reduced testosterone levels, smaller testes, and a shorter anogenital distance suggesting a disruption in normal perinatal masculinization. Second-generation male offspring also show a stress-dysregulation phenotype passed on by the paternal lineage, supporting a
transgenerational epigenetic mode of transmission from father to son. Mechanistically, we have identified dramatic changes in the neonatal brain microRNA environment in response to early prenatal stress. How maternal stress so early in pregnancy can impact the developing brain likely involves changes in placental programming. As the placenta is a sex-specific tissue, we identified a limited set of genes that consistently differ between the sexes across pregnancy, all of which are located on the X or Y chromosomes. Utilizing a proteomics approach, we have found a candidate placental glycosylation enzyme and its biochemical target proteins that are significantly affected by maternal stress. Chromatin immunoprecipitation analyses support a direct mechanism whereby stress experience decreases histone association with this gene, decreasing its expression. As protein glycosylation typically competes with phosphorylation events, such broad changes are likely to yield important outcomes in placenta function and nutrient support of the developing fetus following stress. These results may provide critical insight into the mechanisms contributing to sex biased disease vulnerability to prenatal stress during early pregnancy. Further, as many neurodevelopmental disorders have a sex bias in presentation, these studies may provide novel biomarkers predictive of at-risk pregnancies.

These studies were supported by funding from grants from the NIH MH087597 and MH091258

Fetal Programming

Marek Glezerman, M.D., The Emma Fajman Professor of Obstetrics and Gynecology, Tel Aviv University and Rabin Medical Center

The concept of fetal programming is profoundly changing our perception of the effect of the intrauterine environment for adult health and disease. The obsolete controversy of nature versus nurture is being replaced by the understanding of the importance of exogenous and endogenous effects on the developing fetus which may cause epigenetic changes thus affecting gene expression. As a result one genotype may lead to different phenotypes. Ultimately, this concept has great clinical and public health impact. The definition of maternal-fetal medicine will need to adapt to the new findings related to the intrauterine environment. Indeed, the intrauterine environment is currently regarded by many as the probable most important phase in our life where future health and disease are determined to a large extent. There is of course also a gender aspect to fetal programming. Male and female fetuses may respond differently to exogenous and endogenous stimuli and the different hormonal milieu is of great importance in this aspect. We have looked at pregnancy outcome in relation the sex of the fetus. We have shown that normal singleton pregnancies with a female fetus have a better outcome than those with a male fetus. In twin pregnancies, the best outcome is achieved with a female-female pair and in mixed sex twins, the female sibling improves the outcome of her brother while the male twin worsens the outcome of his sister. We have also demonstrated a significantly different growth pattern for female and male fetuses and our results indicate that sonographic weight estimation is more accurate in male fetuses than in female fetuses. There are different types of common birth traumas in male than in female fetuses and male gender is independently associated with adverse pregnancy outcome. Male neonates are twice more likely to die at birth than female neonates but stillbirth is more common in female fetuses. These and other aspects of fetal programming will be discussed.

OPENING KEYNOTE LECTURE

Gender-Specific Medicine after the Age of Darwin: Achievements and Challenges in 21st Century Science

Marianne Legato, M.D., F.A.C.P., Professor of Clinical Medicine, Columbia University; Adjunct Professor of Medicine, Johns Hopkins.

Discoveries build upon themselves and progress in science is exponential. The past 20 years have witnessed astonishingly powerful and profound changes in our medical and technological achievements. The last decade of the twentieth century nullified the idea that the male is normative for all humans and incontrovertibly demonstrated the importance of including both sexes in scientific protocols. The result was the establishment of the new discipline of gender-specific medicine, which has transformed our concept of normal function and the pathophysiology of disease. The first decade of the new century ushered in what is probably the most important phenomenon in human history: the genomic revolution, enabling us not only to read chromosomes, but to create new ones in the just-born age of synthetic biology. We are no longer confined to the Darwinian system in which spontaneous and random mutations in DNA produce life forms that endure- or not- depending on the environment into which the new phenotype emerges. Given the enormous potential of the new science, the role of biological sex not only on naturally occurring but on the synthetically created or altered genome must be explored. Increasingly, we are developing methods
to technically enhance human function: it is inevitable that there will be sex differences in the response to such enhancements. Regrettably and perhaps predictably, thoughtful attempts to consider the legal, moral and economic aspects of our rapidly expanding ability to change the world around us have been uncoordinated and even fragmented. Often, scientists themselves are reluctant to discuss the implications and potential of their work with experts in other disciplines. Rather than resisting such collaborations as irrelevant and even an obstruction to progress, scientists should be leading the discussion of how we should consider where our spectacular new powers are—and should be—taking us.

NEW INVESTIGATOR SYMPOSIUM

Maternal vascular function in early pregnancy in relation to fetal gender

Abstract Presenter: Charlotte Jacobaeus, M.D., Ph.D.-student
Other Authors: Gun Jörneskog M.D., Ph.D.; Thomas Kahan, M.D., Ph.D., Prof.; Malin Thorsell, Ph.D.; Ellika Andolf, M.D., Ph.D.

Author Affiliations: 1Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden; 2Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Sweden

Background: Fetal gender is independently associated with adverse pregnancy outcome. There is an increased risk for spontaneous abortions, preterm labour and preterm premature rupture of membranes in pregnancies with male fetuses. Women carrying male fetuses are at increased risk for hypertensive disorders during pregnancy, which is a marker for cardiovascular disease later in life, possibly due to a persistent endothelial dysfunction.

Objective: To assess if fetal gender relates to cardiovascular function in women during pregnancy and after delivery.

Materials and Methods: 50 healthy women with singleton viable pregnancies were studied at gestational week 12–14. Supine brachial blood pressure (BP) was measured by a standard oscillometric device. Pulse wave analysis by applanation tonometry was used to calculate central blood pressure and arterial stiffness. Forearm flow mediated dilation (FMD) following ischemia and glyceryl trinitrate, skin microvascular responses (laser Doppler fluxmetry, arbitrary units (AU)) to iontophoretic applications of acetylcholine (Ach) and sodium nitroprusside (SNP), and maximum microvascular hyperaemia (MMH) to local heating were used to assess microvascular function.

Results: At gestational week 12–14, women with a male fetus showed lower microvascular vasodilation in response to SNP (peak SNP 1.67±0.37 vs 2.17±0.48 AU, p <0.001), and a trend of reduced microvascular response to Ach (peak Ach 1.83±0.35 vs 2.10±0.49 AU, p =0.07x), and MMH (peak MMH 118±33 vs 142±45 AU, p =0.065). There were no differences between the groups in brachial BP (106±7/62±6 vs 107±8/61±Hg central BP (89±7/62±5 vs 92±7/63±Hg), changes in FMD following ischemia (+10.0±3.9 vs +10.2±3.6 % and glyceryl trinitrate (+25.6±4.6 vs +26.1±5.9 %) for male and female gender, respectively. Pulse wave velocity was 5.3 ±0.5 vs 5.6±0.6 m/s p=0.11. Body mass index and age was comparable between the groups.

Conclusion: The results suggest that alterations in maternal skin microvascular function at gestational week 12–14 are related to fetal gender. Women with a male fetus have a lower endothelial-independent vasodilatation. Further analyses at gestational weeks 24 and 34, and at nine month after delivery are in progress and might reveal further differences in cardiovascular function, related to fetal gender.

Sex-specific differences in ventricular gene expression between men and women with aortic stenosis

Abstract Presenter: Georgios Kararigas
Other Authors: Elke Dworatzek, George Petrov, Holger Summer, Istvan Baczo, Christoph Knosalla, Stefan Golz, Vera Regitz-Zagrosek

Author Affiliations: 1Institute of Gender in Medicine and Center for Cardiovascular Research, Charite University Hospital, Berlin, Germany; 2German Heart Institute Berlin, Berlin, Germany; 3Bayer HealthCare, Wuppertal, Germany; 4Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary

Aortic stenosis (AS) is a major burden for the heart leading to the development of left ventricular hypertrophy (LVH). In severe AS, aortic valve replacement (AVR) is performed resulting in LVH regression. Sex-related differences in the occurrence and prognosis of AS and consequently LVH have been well documented. However, little is known about the underlying molecular mechanisms and how these might differ between men and women. The purpose of this
study was to assess the impact of sex on gene expression in LV of AS patients at the time of AVR whilst aiming at the identification of LVH regression predictors. LV samples of men (n = 9; age: 75 ± 8 y) and women (n = 10; age: 72 ± 9 y) undergoing AVR were used for RNA isolation. LV geometry/dimension and function were assessed using tissue Doppler echocardiography before surgery and 3 ± 1 days following AVR. Genome-wide expression profiling was performed using the Affymetrix platform and the data were analyzed with R and Bioconductor. Diseased samples were compared with LV samples of men (n = 10; age: 56 ± 4 y) and women (n = 8; age: 56 ± 5 y) with no apparent cardiovascular disorder. Assessment of single gene differential expression with a false discovery rate-adjusted \(P < 0.05 \) identified 1491 transcript clusters regulated in male, 2109 in female and 1382 in both male and female samples. Male-specific genes induced in AS included peristin \((POSTM) \), nebulin \((NEB) \), sarcolipin \((SLN) \) and several members of the collagen family, such as collagen type I alpha 2 \((COL1A2) \) and type III alpha 1 \((COL3A1) \). On the other hand, a number of ribosomal and energy-related genes were repressed in male samples. Female-specific repressed genes in AS included extracellular matrix-related and inflammatory genes, while members of the mitochondrial carrier protein family were induced. Pathway analysis (1000 permutations; \(P < 0.05 \)) revealed that the ECM-receptor interaction, p53 and TGF-beta signaling pathways were induced in male samples, while the oxidative phosphorylation, ribosome and proteasome pathways were repressed. In contrast, several inflammatory pathways, such as the cytokine-cytokine receptor interaction, were repressed in the hearts of women with AS, while the mismatch repair and peroxisome pathways were induced. To identify genes that could potentially predict LVH regression, we tested the association between cardiac gene expression and the difference between pre- and postoperative left ventricular end diastolic diameter (LVEDDd). Among others, we discovered that aquaporin 7 \((AQP7) \) is inversely associated with LVEDDd \((\rho = -0.74; P < 0.001) \). In conclusion, we provide evidence that in patients with AS the genomic response of the heart to LVH differs significantly between men and women. LV gene expression profiling may be useful for the development of a predictive model of LVH regression.

The role of central glucocorticoid receptors in HPA axis regulation in males and females

Abstract Presenter: Matia B. Solomon

Other Authors: Matthew Loftspring, Annette de Kloet, Taylor Rice,

Eduardo Carvalho-Netto, Aynara, C. Wulsin, James P. Herman

Author Affiliations: 1Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio

Glucocorticoids are implicated in the pathophysiology of depression. For example, impairments in glucocorticoid signaling due to hypercortisolemia and/or deficient glucocorticoid receptor (GR) mediated feedback are a common feature in depressed individuals. Much of the knowledge regarding GR regulation of the HPA axis and mood relies heavily upon male subjects. This is quite perplexing, given that females are twice as likely to suffer from depression and often exhibit heightened glucocorticoid stress responses. The paraventricular nucleus of the hypothalamus (PVN) is the primary controller of glucocorticoid release, mediated by activation of the hypothalamo-pituitary-adrenocortical axis. Glucocorticoids signaling through GR exert an inhibitory effect on PVN neurons by decreasing excitatory corticotrophin-releasing hormone (CRH) release and down-regulating CRH and arginine vasopressin (AVP) expression. Thus, optimal GR signaling within the PVN appears to be necessary to constrain excessive glucocorticoid secretion. Given the prominent role of the PVN as the "motor arm" of the HPA axis, the present study was designed to test the overarching hypothesis that GR signaling in the PVN is obligatory for normal HPA axis tone. Local PVN GR knockout mice were generated by breeding homozygous GRfloxed mice with Sim1-cre recombinase transgenic mice. Because Sim1 is primarily expressed in neurosecretory PVN neurons, the resulting Sim1-cre/GRfloxed mice have a prominent deletion of GR in the PVN, sparing GR expression in other brain regions (e.g., corticolimbic areas) as well as the pituitary and adrenal. Here, we examined sex differences in the necessity of PVN GR to modulate HPA axis activity. Analysis of HPA axis function revealed no significant differences in nadir and peak corticosterone levels between male PVN GRKO and male control mice. However, when subjected to an acute restraint challenge male PVN GRKO mice had increased adrenocorticotropin hormone (ACTH) and corticosterone responses compared with controls, indicating stress-induced hypersensitivity. Following chronic stress exposure an opposite neuroendocrine profile emerged, with male PVN GRKO mice being hyperresponsive to a novel restraint challenge. Unlike male PVN GRKO mice, female PVN GRKO mice hypersecreted corticosterone under basal conditions (circadian nadir) but had reduced ACTH responses to acute stress, without accompanying changes in corticosterone secretion. In females, PVN GRKO did not affect HPA axis responses to chronic stress. Overall, the data indicate that in males, the PVN GR is required for inhibition of acute stress responses and appears to be in-
volved in maintenance of PVN excitability in the face of chronic drive. In general, the HPA phenotype is considerably more circum-
spect, findings that are consistent with other studies in our lab that
either pharmacological or genetic disruption of GR signaling is rela-
tively inconsequential in intact females. These data suggest that al-
terative HPA axis regulatory mechanisms exist in females, and
raise the possibility that failure of these mechanisms (rather than
GR deficit) contribute to the sex differences in behavioral and HPA
axis pathology in diseases such as depression.

This work was supported by NIH MH 069725 to JPH and MBS.

Microglia are essential to sexual differentiation of brain and behavior

Abstract Presenter: Kathryn M. Lenz
Other Authors: Margaret M. McCarthy
Author Affiliations: University of Maryland School of Medicine,
Baltimore, Maryland

Sexual differentiation of the rodent brain largely results from the
perinatal androgen surge from the male testis acting to masculinize
the male brain. In the preoptic area (POA), neonatal estradiol arom-
 ativized from testosterone up regulates the production of the proin-
flam matory molecule, prostaglandin E2 (PGE2) as a component of
sex-specific brain development. PGE2 induces a two-fold greater
density of dendritic spines synapses on male POA dendrites com-
pared to females (Amateau & McCarthy, 2002), and also masculin-
izes adult copulatory behavior (Amateau & McCarthy, 2004). A
single neonatal dose of PGE2 is sufficient to masculinize the POA
behavior, suggesting a strong feed-forward process leads to
sustained increases in PGE2 during the critical period, yet the
mechanisms underlying this feed-forward process were unknown.
Microglia, the primary im munocompetent cell in the brain, both
produce and respond to prostaglandins, thus we hypothesized that
they may be responsible for this feed-forward process. Microglia are
in an activated state neonatally and contribute to normal brain de-
velopment, thus we sought to determine whether there are sex dif-
ferences in POA microglia and whether they influence brain
masculinization. We found that neonatal males have twice as many
microglia as females and a more activated morphological profile,
and both estradiol and PGE2 masculinize microglial number and
morphology in females. Microglial inhibition during the critical pe-
riod for sexual differentiation prevents estradiol-induced masculin-
ization of dendritic spine density in the POA as well as adult copu-
latory behavior. Microglial inhibition also prevents the estradiol-in-
duced upregulation of PGE2 in the POA, indicating that microglia
are essential to the feed forward process through which estradiol
up regulates prostaglandin production. To determine the wider in-
flam matory signaling profile through which microglia influence sex-
specific development, we have measured cytokine levels in the
developing POA and found many sex differences, including in IL-
1beta and IL-10 (higher in males), and IL-2, IL-4, and TNFalpha
(higher in females). These studies demonstrate that immune cells in
the brain interact with the nervous and endocrine systems during
development, and are crucial for the sexual differentiation of brain and behavior.

This work was supported by R01MH52716(MMM), F32NS076327
(KML).

17β-estradiol and signaling through the estrogen receptor-α modulate inflammatory responses to
influenza A viruses in females

Abstract Presenter: Dionne P. Robinson1,2
Author Affiliations: 1The W. Harry Feinestone Department of Mol-
ecular Microbiology and Immunology; 2The Johns Hopkins
Bloomberg School of Public Health, Baltimore, Maryland

Data from influenza pandemics (i.e. 1918 H1N1, 1957 H3N2, 2009
H1N1) and H5N1 avian influenza outbreaks reveal that sex is a de-
terminant of morbidity and mortality associated with influenza A
virus infection of young (15-44 years of age) adults. Compared with
males, females are more than twice as likely to die following infec-
tion with H5N1 avian influenza. More recently, during the 2009
H1N1 pandemic, females, regardless of pregnancy status, were sig-
nificantly more likely to be hospitalized than males. While gender
roles associated with each sex may influence sex differences in in-
fluenza exposure and outcome, we hypothesized that biological dif-
ferences between males and females impact the immune response
to infection. In our rodent model, adult (6-8 weeks of age) male
and female C57BL/6 mice are intranasally inoculated with a mouse-
adapted H1N1 influenza virus, resulting in females having greater
moribidity and mortality than males following infection. My studies
reveal that greater influenza severity in females than males corre-
lates not with differences in virus replication, but with greater in-
duction of proinflammatory cytokines and chemokines in the lungs.
Infection with influenza significantly affects reproductive function in both sexes resulting in estrus cycle dysregulation and reduced 17β-estradiol (E2) and progesterone concentrations in females and reduced concentrations of testosterone (T) in males. Removing the testes and ovaries from males and females, respectively, prior to influenza infection eliminates the sex difference in influenza outcome suggesting a role of sex steroid hormones. Exogenous administration of E2 or estrogen receptor-α (ERα) agonist to ovariectomized (ovx) females, but not androgens (e.g. T or 5α-dihydrotestosterone) to gonadectomized males, protects against influenza infection. Elevated E2 and signaling through ER correlates with altered activity of inflammatory mediators in the lungs, including reduced tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), and increased macrophage inflammatory protein 1-α (MIP-1α), compared with placebo treated ovx females. Chemokines are important for immune cell recruitment to the site of infection which can be beneficial for control of influenza, but can promote immunopathology and death if excessive. To test the hypothesis that E2-mediated changes in chemokines, including MCP-1 and MIP-1α, following influenza infection results in altered immune cell influx into the lungs, innate immune cells were enumerated from the lungs of E2-treated and placebo-treated ovx females at several time-points post-inoculation. Following influenza infection, E2-treated females have significantly greater proportions of inflammatory cells, including neutrophils, inflammatory dendritic cells, and plasmacytoid dendritic cells, in their lungs than placebotreated females during the onset of the adaptive phase of the immune response. Whether E2 treatment and signaling through ERα increases recruitment and activity of influenza-specific cytotoxic CD8 T cells in the lungs is currently under investigation. Collectively these data demonstrate that sex differences in response to influenza are primarily modulated by hormonal regulation of immune responses rather than differential virus replication. Furthermore, E2 treatment protects females against influenza infection by altering inflammatory responses, influencing the recruitment of immune cells into the lungs. Taken together, these data suggest that elevated E2 and use of selective ER modulators may have therapeutic potential against influenza pathogenesis.

Financial support for this study is provided by NIH Grants A1079342 and A1089034.

Sex differences in play fighting – now you see them, now you don’t: possible role for sexually dimorphic vasopressin expression in the brain

Abstract Presenter: Matthew J. Paul
Other Authors: Clemens K. Probst, Joseph I. Terranova, Elaine K. Murray, Nafissa I. Ismail, and Geert J. de Vries
Author Affiliations: Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA, 01003

Sex differences in behavior are pervasive, including many behavioral disorders characterized by abnormal social development (e.g., autism). Play fighting is the most prominent social behavior in juvenile rats and provides an ideal model to investigate sex differences in the neural control of early social development. Although it is often reported that male juvenile rats play more than females, several studies fail to detect this sex difference. We tested whether the discrepancies in the literature could be explained by a differential influence of context on male and female play. We manipulated residential status of the test cage to determine whether two commonly used play paradigms (Resident-Intruder and Neutral Cage) impact the sex difference in play fighting of Wistar rats. We further investigated the ontogeny and neurobiology of social behavior in males and females by conducting a detailed developmental profile of play fighting and vasopressin mRNA expression in the bed nucleus of the stria terminalis (BNST), a sexually dimorphic neuropeptide system thought to play a role in the regulation of several social behaviors including play. Robust sex differences seen in the Resident-Intruder paradigm (males > females) were absent under Neutral Cage testing conditions. Furthermore, we found that the sex difference was reversed (females > males) around the developmental onset of play (18-19 days of age), with females exhibiting an earlier, more rapid onset than males. At this time, vasopressin mRNA expression in the BNST was high in males but undetectable in females. As levels of play increased with age, male BNST vasopressin expression decreased. A negative correlation between vasopressin and play behavior was also evident when the analysis was restricted to rats of the same age, suggesting an inhibitory role for vasopressin in this nucleus. This agrees with earlier findings in our lab that injections of a vasopressin 1a receptor antagonist into projection areas of the BNST increases play fighting in males (Veenema et al., unpublished results). These data demonstrate that the sex difference in play fighting of rats is context-dependent, implicate more rapid social development in female rats, and suggest vasop-
ressin acts as a neural brake on play. Such differences in the neural control of social behavior may contribute to differences in the incidence and course, and by implication potential treatment, of behavioral disorders.

SYMPOSIUM I: SEX DIFFERENCES AND THEIR IMPACT ON OSTEOARTHRITIS

The knee as an organ: sex differences in Incidence and severity of OA

Mary O’Connor, M.D., Department of Orthopedic Surgery, Mayo Clinic

The purpose of this presentation is to review the knee as an organ including the contribution of different tissues to knee function and the potential influence of sex on such tissues and function. Furthermore, sex and gender differences in the incidence and severity of knee osteoarthritis will be highlighted with an emphasis on clinically relevant differences.

Hormonal nodulation contributes to sex differences in OA

David A. Hart, Ph.D., McCaig Institute for Bone & Joint Health, University of Calgary; SWHR ISIS MSK Network

Introduction: It is clear that sex differences contribute to a higher incidence of anterior cruciate ligament knee injuries (and secondary OA development) in young females and a loss of systemic hormonal regulation in a subset of post-menopausal females contributes to onset of primary OA. Studies of both humans and preclinical models have indicated that hormonal regulation of connective tissue integrity in subsets of females are a relevant factor in defining risk for injury and functioning of the knee. How such hormonal influences are manifest on specific tissues of the knee has been the subject of intense investigation over the past decade and these will be reviewed.

Methodological Approaches: In humans, studies have focused on healthy young females with regular menstrual cycles, twin studies, females with joint hypermobility syndrome, pregnant females, and peri- and post-menopausal females. Such studies have been complemented by experimental preclinical models using in vivo and in vitro approaches.

Results/Outcomes: Studies of young females have shown that knee laxity can vary in some, but not all individuals at different phases of the menstrual cycle. Joint laxity can also vary during pregnancy, and tissues do not return to pre-pregnancy conditions. Following menopause, joint function can change in both humans and following surgical menopause in preclinical models. Twin studies have also supported a role for genetic variables in OA onset in females. Studies to date support the conclusion that hormones influence connective tissues of the knee, but the “how” of such influences at the individual level still remain undefined. While some studies have indicated direct effects of sex hormones on connective tissues and expression of specific genes, how such findings translate into disease risk or injury risk remains.

Conclusions: While hormonal influences contribute to sex differences in risk, it is clear that female populations are comprised of subsets of individuals with different levels of risk and thus are heterogeneous. Significant gaps still exist in our knowledge base in this regard which require addressing.

Central nervous system modulates knee OA pain

Kathleen Sluka, Ph.D., P.T., Physical Therapy and Rehabilitation Science Graduate Program, Pain Research Program, Professor, University of Iowa

People with osteoarthritis (OA) can have significant pain that interferes with function and quality of life. Women with knee OA have greater pain and greater reductions in function and quality of life than men. In many cases, OA pain is directly related to sensitization and activation of nociceptors in the injured joint and correlates with the degree of joint effusion and synovial thickening. In some patients, however, the pain does not match the degree of injury and continues after removal of the nociceptors with a total joint replacement. While peripheral components could contribute to the underlying pain there is growing awareness that alterations in pain processing in the central nervous system significantly contribute to the ongoing pain of OA. This talk explores the central neural factors that contribute to knee OA pain with an emphasis on differences between the sexes and gaps in knowledge.
Sex differences in naturally occurring knee osteoarthritis in baboons

Lorena M. Havill, Ph.D., Texas Biomedical Research Institute

Osteoarthritis (OA) affects most older and many younger Americans, but the causes of disease onset and of differences between sexes and individuals in susceptibility and progression remain elusive. Non-human primates, such as the baboon (Papio hamadryas ssp.), are closely related to humans and, like humans, naturally develop OA with age. Baboons, therefore, can serve as an invaluable model for basic and translational OA research that is directly relevant to humans. We present the results of the first systematic examination of knee OA occurrence and severity in baboons with regard to age and sex. We examined right distal femora ex vivo from 306 adult pedigreed baboons aged 10 to 33 years, equally divided and age-matched between the sexes. Individuals were categorized as “unaffected” or as showing “mild,” “moderate,” or “advanced” OA based on macroscopic examination of the articular surface of the distal femur. Eighty percent of females and 89% of males show some degree of knee OA (p=0.08). Though this would suggest slightly higher burden of disease in males, a different scenario emerges when patterns of OA severity are considered. Striking sex differences are apparent when the sample is examined with regard to age. Younger male baboons (under the age of 17 years, ~50 years in humans) are affected at a much higher rate (88%) than are females (71%; p=0.003). The most striking difference in the younger animals is the higher percentage of males (57%) relative to females (42%) that show mild cartilage degeneration. Moderate and advanced OA occur at similar rates between sexes in the younger animals (22% v. 23% and 6% v. 9%, respectively). Older male (90%) and female (90%) baboons show no difference in knee OA occurrence, but show very different patterns of severity. Affected older females are equally distributed among the three stages of severity. Males, on the other hand, show much more “moderate” disease (52% v. 33%) and much less “advanced” disease (19% v. 33%) than do females. These results suggest that males tend to develop knee OA earlier in life, but that females progress more rapidly to advanced stages of disease. This work was supported by a grant from the Society for Women’s Health Research Isis Network and by a Young Investigator Translational Science Award from the Max and Minnie Tomerilin Voelcker Fund.

SYMPOSIUM II: GLOBAL ASSESSMENT OF SEVERE CORONARY ARTERY DISEASE

Age and development of ischemic coronary disease: does sex matter?

Pamela Ouyang M.B.B.S., Johns Hopkins University School of Medicine

Ischemic heart disease mortality increases with age. An absolute age related increase in mortality that appears to bend upward around the fifth decade of life has led to the hypothesis that menopause associated factors contribute to the increase in ischemic mortality as women age. However, a similar absolute age related increase is seen in men. A proportional mortality model where the logarithm of mortality is plotted against age would be consistent with a constant probability of the failure of tissue reparative cells across a lifetime. We analyzed data from the United Kingdom Office for National Statistics for age and sex specific mortality rates for census years 1950 to 2000 to follow the mortality of three decade-long birth cohorts that included women who reached postmenopausal ages within the 20th century. All-cause mortality and heart disease mortality for men and women, and breast cancer mortality (women only) were studied. Similar US cohorts were also analyzed using data from the US National Center for Health Statistics database. We fitted data using models assuming (i) a linear association between mortality rates and age (absolute mortality) or (ii) a logarithmic association (proportional mortality). For England-Wales data, proportional increases in ischemic heart disease mortality fitted the data better than absolute increases. We identified a deceleration in male mortality after age 45 years (decreasing from 30.3% to 5.2% per age-year, P = 0.042), although the corresponding difference in women was non-significant (P = 0.43, overall trend 7.9% per age-year, P<0.001). By contrast, female breast cancer mortality decelerated significantly after age 45 years (decreasing from 19.3% to 2.6% per age-year, P<0.001). We found similar results in US data. Proportional age related changes in ischemic heart disease mortality, consistent with a loss of reparative reserve, fit longitudinal mortality data from England, Wales, and the United States better than absolute age related changes in mortality. The patterns differ by sex. In women, heart disease mortality increased exponentially throughout all ages from the 20’s to 70’s with no acceleration at menopause. Acceleration in male heart disease mortality at younger ages could explain sex differences rather than menopausal changes in women.
Coronary artery disease in Women: how common “atypical” symptoms reveal different pathophysiological substrates

Maria Grazia Modena, M.D., Institute of Cardiology, Women’s Clinic, Department of Medicine. Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy.

Clinical presentation of coronary artery disease (CAD) in women is different, with atypical symptoms, such as back pain, dyspnea, nausea/vomiting and weakness which may be the manifestations of various substrates. We studied coronary microvascular/endothelial dysfunction (ED), in 45 consecutive women (mean age: 57.6 ± 8.7 years) with symptoms and negative traditional tests. Myocardial perfusion at rest and during stress test using magnetic resonance imaging (MRI) revealed “fixed” perfusion defects, probably due to permanent damage of coronary microcirculation; which may precede typical atherosclerotic epicardial CAD as suggested from our follow-up data. Coronary dissection is the most common cause of acute myocardial infarction (AMI) in fertile life and in pregnancy. We have started a registry of such women in Italy, and have enrolled 150 women to date (mean age 30 ± 4.9 years). In our Registry of 230 post-menopausal hypertensive patients (mean age 68 ± 6 years), stress-induced AMI with normal CA (Tako-Tsubo cardiomyopathy) was present in 87%, as an example of extreme reversible ED. Finally, the same clinical presentation may characterize older women with epicardial CAD, but still gender differences are described. Pathologic data indicate that women present more often with plaque erosion than rupture and women have more periprocedural complications when undergoing percutaneous coronary interventions (PCI). These findings are confirmed by studies in which we are participating: the ongoing OCTAVIA (Optical Coherence Tomography After Immediately Thrombus Aspiration), and the SPIRIT Women Trial (Evaluation of the safety and efficacy of XIENCE V everolimus-eluting stent system) a prospective, open-label, multicenter study in which 1,572 women were enrolled in 73 sites outside the United State). In the SPIRIT Trial, early postmenopausal women present with more inflammation, and suffer more periprocedural complications due to smaller coronary arteries and presence of plaque erosions. In conclusion women differ from men in the clinical presentation of CAD, revealing a spectrum of pathophysiologic substrates with may have specific impact on treatment and prognosis.

Sex and gender differences in CHD diagnostics

Prof Karin Schenck-Gustafsson M.D., Ph.D., F.E.S.C., Department of Medicine, Karolinska Institutet, Chief Consultant of Cardiology, Karolinska University Hospital

Coronary heart disease (CHD) in women is different from that in men with respect to symptoms, pathophysiology, value of the diagnostic tests and response to treatment. The risk factors have a different impact and women have special hormone-related risk factors. CHD hits women about ten years later than men, but women with risk factors especially with diabetes lose their sex advantage. Women with CHD are less likely to experience chest pain than men and may have less specific symptoms. Non-invasive tests are less sensitive and specific in women compared with men. Women with angina or myocardial infarction have a lower prevalence of significant coronary stenoses and atherosclerosis seems to be more diffuse than in men. In a recent study on all Swedish patients during a year (n=12,200) being investigated because of stable chest pain and referred for a first-time elective diagnostic coronary angiography were included. In the youngest age group (≤59 years), more women than men 78.8 % vs. 42.3% had normal/nonsignificant CAD, whereas more men had either left-main or three-vessel disease (18.2 vs. 4.2%). Was almost 80% of all caths unnecessary in women? Evidently, new techniques are needed to identify coronary heart disease in women.

Sex Differences in cardiometabolic diseases

Alexandra Kautzky-Willer, M.D., Internal Medicine III, Endocrinology & Metabolism, Gender Medicine Unit, Medical University of Vienna, Austria

The dramatic increase in the prevalence of overweight and obesity has resulted in a major burden on healthcare costs in developed countries. Excess fat mass increases the risk of mortality overall and increases individually the risk of chronic diseases like type 2 diabetes, hypertension, cardiovascular disease and many other health problems. Body fat distribution differs between men and women with significant changes during life-time. Obesity and type 2 diabetes are chronic lifestyle-diseases which are dramatically increasing worldwide. Both biological and psychosocial factors, environment and lifestyle are involved in the pathogenesis of these metabolic disorders and thus important sex and gender based differences can be
found. Although obesity causing most cases of type 2 diabetes is classified by the World Health Organisation as one of the principle causes of preventable chronic diseases, prevention strategies and treatment options are limited. Life-long programs including lifestyle (diet, exercise) and behavioural modifications are necessary and there is need of new drug therapies and combination therapies. Bariatric surgery may be an interesting option in subjects with BMI >37kg/m² and co-morbidities. Both obesity and diabetes increase the risk of cardiovascular disease (CVD: myocardial infarction and stroke) but also of certain malignancies. Among others women have increased risk of postmenopausal breast cancer and endometrium carcinoma. Obesity (in particular central adiposity) may be associated with even higher risk to develop type 2 diabetes in women than men although various longitudinal studies in middle-aged subjects report higher diabetes incidence rates in men compared to women. Men appear to develop diabetes at lower BMI than women. Diabetes increases the risk of CVD in both sexes but more dramatically in women than men compared to non-diabetic subjects of the same sex. Diabetes may be a more prominent risk factor of stroke in males but obesity may be a more important predictor of stroke in females. Differences in treatment and communication and lack of sex-specific guidelines may further aggravate sex- and gender based outcomes in diabetic subjects.

SYMPOSIUM III: SEX DISPARITIES IN CANCER

Sex disparities in cancer incidence, mortality and survival

Michael B. Cook, Ph.D., Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS

Background: Previous research has noted that cancer incidence and mortality rates tend to be higher among males than females, and that males tend to have poorer survival relative to females. However, rarely have these themes been the focus of investigation.

Methods: For analysis of sex differences in cancer incidence, mortality and survival, we used the Surveillance, Epidemiology and End Results (SEER) program data. We computed age-adjusted (2000 U.S. standard population) sex-specific incidence rates and male-to-female incidence rate ratios (IRR). Similarly for mortality, we compared sex-specific mortality rates and examined male-to-female mortality rate ratios (MRR). For assessment of cancer survival, we estimated hazard ratios for death in the 5-year period following cancer diagnosis for males compared with females.

Results: The 5 cancers with the largest male-to-female IRR were Kaposi sarcoma (28.73), lip (7.16), larynx (5.17), mesothelioma (4.88), and hypopharynx (4.13). Only 5 cancers were more incident in females: breast (0.01), peritoneum, omentum, and mesentry (0.18), thyroid (0.39), gallbladder (0.57), and anus, anal canal, and anorectum (0.81). Disparities of cancer mortality largely paralleled those of cancer incidence. In addition, the patterns of sex-specific mortality rates and male-to-female MRRs by age and stratified by decade appeared to be nearly identical to the patterns observed in cancer incidence rates. Cancer survival was generally worse for males than females: the 5 highest hazard ratios were for the cancer sites skin excluding basal and squamous (1.58), endocrine system (1.32), floor of mouth (1.32), anus, anal canal, and anorectum (1.21), and lymphoma (1.20). In contrast, 2 sites were notable for their decreased risk of cause-specific mortality in men relative to women: urinary bladder (0.83) and tongue (0.89).

Conclusions: The results of this analysis supports the idea that sex disparities in cancer mortality arise from the sex differences in cancer incidence. This analysis also shows modestly, but appreciably, worse survival in men for a number of cancers. Future analytic studies should attempt to understand causes of observed sex disparities in cancer.

This work was supported by the Intramural Program of the National Cancer Institute, NIH, Department of Health and Human Services.

Inflammation, metabolism, aging and cancer: dangerous liaisons

Michael Karin, Ph.D., Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, UCSD School of Medicine, La Jolla, CA.

The most common form of liver cancer, hepatocellular carcinoma (HCC), usually arises in the context of chronic liver disease, such as cirrhosis, viral hepatitis and non alcoholic fatty liver disease (NAFLD). Using chemically induced HCC in mice as an experimental model, we found that inactivation of NF-κB or p38α signaling in hepatocytes results in increased accumulation of reactive oxygen species (ROS) and enhanced hepatocyte death, changes that accelerate HCC development. ROS accumulation and oxidative stress lead to activation of Jun kinases (JNK) and JAK2, resulting in enhanced AP-1 and STAT3 activities. Accordingly, total JNK1 ablation and hepatocyte-specific
deletions of c-Jun or STAT3 inhibit the development of chemically-induced HCC. We also investigated how obesity enhances HCC development using a model of obesity-promoted chemically-induced HCC. Our results indicate that obesity leads to hepatosteatosis which results in metabolic alterations and chronic inflammation. Inhibition of steatohepatitis through ablation of either type 1 TNF receptor (TNFR1) or interleukin 6 (IL-6) abolishes the tumor promoting effect of obesity. Although HCC is one of the most lethal cancers with a 5-year survival rate of 5%, it is very slow growing. Thus, early detection of HCC may provide an opportunity for therapeutic intervention before the cancer becomes too aggressive and refractory to therapy. To this end, we have isolated from livers of mice treated with the chemical carcinogen diethylnitrosamine (DEN) a population of pre-malignant cells that can give rise to HCC when transplanted into a suitable host. These cells, which we named HCC initiating cells (HIC), are not as transformed as HCC cells and display unique properties that should enable both their early detection as well as elimination.

Sex hormones and immune regulation: implications for cancer therapy

Svetomir N. Markovic, M.D., Ph.D., Mayo Clinic-Rochester, MN

Immune-related processes in humans are under temporal regulation. In advanced melanoma, we have showed that systemic immunity is polarized toward a global state of chronic inflammation and is governed by infradian biorhythms of cytokines and immune cell subsets, which extend beyond the 24-hour circadian variability reported in normal volunteers. Our preliminary data also shows that chemotherapy delivery in different “phases” of the infradian immune cycle (rhythm) yields dramatically different clinical outcomes, conferring clinical relevance to this early observation. The mechanism of the newly described infradian immune biorhythm in advanced melanoma is unknown. Our objective is to identify whether these fluctuations between states of activation and tolerance are an attribute of the host immune response to malignancy, or whether these immune biorhythms may also be manifestation of neuroendocrine regulation of immunity. Published literature offers some supportive evidence towards this supposition: (1) cells of the immune system express receptors for neuroendocrine and sex hormones; (2) the circadian variation of humoral and cellular immunity is hormonally-modulated (3) clinical outcomes in patients with melanoma are influenced by sex and menopausal status; and (4) there appears to be significant overlap between mechanisms of fetomaternal tolerance in normal human pregnancy with those of advanced melanoma. The latter, in conjunction with emerging data on the impact of menopause on normal aging of immunity in women suggest a possible regulatory role of sex hormones in systemic immune homeostasis. Elucidation of these interactions will offer critical insights into as yet unrecognized aspects of personalized cancer therapy particularly relevant in therapeutic modalities that rely on the patients own immune system as a mediator of anti-tumor activity.

Role of estrogen in Helicobacter pylori associated gastric cancer

James G. Fox, D.V.M., Division of Comparative Medicine, Massachusetts Institute of Technology

Helicobacter pylori infection increases lifetime risk of duodenal and gastric ulcers, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric carcinoma (GA). Gastric cancer is the second most frequent cause of cancer-related death worldwide. Age-standardized and cumulative incidence rates of gastric adenocarcinoma are twice as high in males as in females with a 2.5-fold difference around age 60. The age-specific pattern of the M/F gastric cancer incidence curve is a global phenomenon, seen equally in populations with high and low risks for GC. Given the high prevalence of H. pylori worldwide, this implies that intrinsic sex differences modulate H. pylori-induced carcinogenesis irrespective of other environmental factors. Although estrogen is hypothesized to reduce gastric adenocarcinoma in women due to its myriad of immunomodulatory effects, few studies involving animals with a recognized sexual dimorphism in GC incidence have analyzed the role of 17β-estradiol and H. pylori in gastric carcinogenesis. Studies using ovariectomized female H. pylori infected INS-GAS mice demonstrated that E2 treatment of chronically infected mice, attenuated the severity of gastritis and reduced the development of gastric cancer. We hypothesized that E2 was protected due to decreases in proinflammatory mediators like IL-1 and iNOS and increases in anti-inflammatory mediators like IL-10. E2 administered prophylactically, but not castration, reduced H. pylori induced gastric lesions in male INS-GAS mice and was associated with an increase in gastric FoxP3+ regulatory T cells. Infected INS/GAS male mice treated with E2 experienced a significant reduction in gastric lesions with no cancer development compared to more severe lesions and a 40% incidence of gastric carcinoma in infected untreated males. Progressive H. pylori gastritis results from chronic inflammatory processes mediated by proinflammatory Th1

SIXTH ANNUAL MEETING OF THE ORGANIZATION FOR THE STUDY OF SEX DIFFERENCES
and Th17 cells. The attenuation of gastric lesions by E2 treatment was accompanied by a downregulation of proinflammatory cues. Sex differences in gastric cancer incidence, the protective effect of prolonged fertility in females and the reduced risk among women taking postmenopausal hormones, are elements suggesting that sex hormones play a protective role in *H. pylori* associated gastric cancer. Our findings suggest that E2 decreases gastric cancer by decreasing neutrophil infiltration and attenuating the chronic inflammatory response, and by decreasing expression of Wnt/β-catenin signaling factors, important in oncogenesis. We believe that the reduction of neutrophilic infiltrate by CXCL1 reduces the exposure of the stomach to oxidative stress, a cause of DNA mutagenesis, decreases proinflammatory cellular infiltrates and delays the progression of gastric cancer.

SYMPOSIUM IV: SEX DIFFERENCES IN STEM CELLS

Effect of donor & host sex in tissue regeneration with muscle derived stem cells

Johnny Huard, Ph.D., Henry J. Mankin Professor Departments of Orthopaedic Surgery and Microbiology and Molecular Genetics University of Pittsburgh, School of Medicine Stem Cell Research Center.

Members of the Stem Cell Research Center (SCRC) have isolated various populations of myogenic cells from the postnatal skeletal muscle of normal mice by means of the cells’ adhesion characteristics, proliferation behavior, and myogenic and stem cell marker expression profiles. Although most of these cell populations have displayed characteristics similar to those of skeletal muscle satellite cells, we also have identified a unique population of muscle-derived stem cells (MDSCs). The MDSCs exhibit long-term proliferation abilities, elevated self-renewal rates, increased resistance to stress, and they are multipotent and can differentiate toward a variety of tissue types including: muscle (skeletal and cardiac), neural, endothelial, osteogenic, and chondrogenic lineages, both in vitro and in vivo. In contrast to other myogenic cell types, MDSCs show very efficient engraftment and regeneration of various musculoskeletal tissues due to their ability to highly survive post-implantation through the high anti-oxidant expression by MDSC. We have recently observed that the gender/sex influenced not only the myogenic, osteogenic and chondrogenic potential of MDSC but also their regeneration index of various tissue of the musculoskeletal system. The gender of the host animal also influenced environmental cues released within the injured tissues which have been found to also impact the regenerative ability of MDSCs. Potential strategies to improve the regenerative potential of MDSCs are being explored to prevent the formation of fibrosis within injured tissues by blocking the action of TGF-β. Finally, blood vessels contain several cell types, including endothelial cells and pericytes that are likely the place of origin of the murine MDSCs and consequently strategies to improve angiogenesis are being investigated as potential therapeutic options to improve tissue healing. The results outlined above open new avenues by which researchers could use muscle stem cell–based gene therapy and tissue engineering to improve tissue regeneration.

Sex differences in neural and glial genesis in the brain.

Margaret M. McCarthy, Ph.D., University of Maryland School of Medicine, Baltimore MD

Ongoing neurogenesis in the mature brain has been a topic of interest and controversy, with evidence for new neurons continuing to be born in the dentate gyrus of the hippocampal formation in humans and the subventricular zone and subgranular layer of the dentate gyrus of the adult rodent. Using the laboratory rat, we have focused on a different developmental phase, the early postnatal sensitive period during which the majority of sex differences in the brain are organized. Using BrdU labelling of proliferating cells combined with neuronal and astrocytic markers, we have found that neural stem cell proliferation occurs at twice the rate in newborn male rats as females. This sex difference is mediated by endogenous estradiol as neuronal proliferation can be blocked in males by both estrogen receptor antagonists and aromatase inhibitors or stimulated in females by exogenous estradiol administration. The sex difference in stem cell proliferation is transient, occurring only during the first few postnatal days, but reappears in the early juvenile period. Intriguingly, estradiol appears to permanently organize the pattern of stem cell proliferation via epigenetic mechanisms. The amount of global DNA methylation and the activity of DNA methylating enzymes (DNMTs) is significantly higher in neonatal female hippocampus compared to male and decreased in females by exogenous estradiol administration. Inhibition of DNMT activity in females prevents the reappearance of the sex difference in stem cell proliferation in the early juvenile period. Many of the new neurons born during the first few days of life persist until maturity, suggesting an enduring functional
impact of the sex difference in stem cell proliferation, but the behavioral or physiological significance has not yet been identified. This research was supported by NIH R01 NS050525 to MMM.

Sex differences in microglial colonization of the developing brain: implications for health and disease.

Jaclyn M. Schwarz, Ph.D., Department of Psychology and Neuroscience, Duke University

Microglia are the primary immune cells of the brain. Under baseline conditions, microglia survey and maintain homeostasis of the microenvironment. Following insult, injury, or infection, microglia respond with a rapid and robust increase in the synthesis of immune molecules, including cytokines and chemokines. Microglia are first observed within the developing rat brain around embryonic day 14, originating via the infiltration of primitive macrophage precursors from the yolk sac of the developing embryo. At this time, microglia have a large, round, amoeboid morphology and their production of cytokines and chemokines is critical for many processes of normal brain development. Notably, sex differences exist in many processes of neural development; however, it is unknown whether a sex difference concurrently exists in the colonization or morphology of microglia within the developing brain. We analyzed the number and morphology of microglia at multiple points throughout the development of the rat brain, including embryonic day 18, postnatal day (P) 0, P4, P30, and P60. We demonstrate for the first time that the number and morphology of microglia within brain regions important for cognition is dependent upon the sex and age of the individual, as well as the specific brain region of interest. Specifically, males have significantly more microglia than females within the hippocampus, amygdala and cortex at P4; while females have significantly more microglia than males in these same brain regions just prior to adolescence (P30) and into adulthood (P60). Finally, gene expression of a large number of cytokines, chemokines and their receptors shifts dramatically over development of these brain regions, and is also highly dependent upon sex. Taken together, these data warrant further research into the role that sex-dependent mechanisms may play in microglial colonization, number, and function, and their potential contribution to neural development, function, or dysfunction.

Modulation of post-stroke neural and glial progenitor responses is sex-dependent

Anne Comi, M.D., Associate Professor, Kennedy Krieger Institute, Baltimore, MD

Background: Neonatal stroke occurs in 1 in 4000 term births, presents late with seizures, and results in cognitive impairments. Cellular therapy holds promise for a future intervention because of the long time window of efficacy suggested by preclinical studies in adult models. Ongoing safety trials of cord blood in neonates after hypoxic-ischemic injury supports the relevance of preclinical studies with these cells.

Methods: P12 CD1 mice received right common carotid ligation and 48 hours later were injected i.p. with 1x10^5 CD34+ enriched human cord blood stem cells (CBSC). Behavioral milestones and animal weights were evaluated from P9 to P21. 5-bromo-2’-deoxyuridine (50mg/kg, i.p.) was injected 2h prior to sacrifice on P21; spleen weights were measured. Percent brain atrophy was quantified. Immunohistochemistry was performed and density of BrdU, Iba-1, and GFAP expression or labeled cells in the SGZ and SVZ regions quantified.

Results: Spleen size was reduced and correlated with the severity of the injury and with post-stroke neurogenesis in vehicle treated injured animals; CBSC treatment removed these correlations. Severity of injury and animal weight were not impacted by CBSC treatment. Functional tasks were not sensitive to stroke injury, and therefore did not show a CBSC response. In males treated with CBSC, SGZ proliferation was significantly increased bilaterally compared to injured males treated with vehicle, and this was associated with a marginal trend for increased GFAP expression in the contralateral DG; these results were not seen in injured females treated with CBSC. In the contralateral SVZ and SVZ region, there was a trend for increased BrdU associated with significantly increased GFAP expression. Density of Iba-1 labeled cells was increased in the ipsilateral injured DG and SZV but was not altered by the cell treatment in the injured animals, either in the overall group or analyzed by animal sex.

Conclusions: CBSC i.p. after neonatal stroke regulates post-stroke neurogenic niche proliferation and GFAP expression in a sex-dependent manner. This suggests a sex-dependent impact of the CBSC upon the radial glial stem cells and astrocytes that likely occurs via cytokine release. Future studies are needed to delineate mechanisms underlying this sex-dependent response.
SYMPOSIUM V: SEX DIFFERENCES IN MECHANISTIC PATHWAYS OF CARDIOVASCULAR DISEASE

The Yentl Syndrome 2011: Why are there differences in ischemic heart disease in women and men (including genes)?

Noel Bairey-Merz, M.D., Cedars-Sinai Medical Center

Women are now more likely to die of ischemic heart disease than men. Explanations suggested include changes in risk factors, menopause, longevity and genes. Women less frequently receive the life-saving medical therapies for ischemic heart disease compared to men. The NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) has documented a high prevalence of coronary vascular dysfunction in women with symptoms and evidence of ischemia with no obstructive CAD. The condition is associated with an adverse prognosis and healthcare costs similar to obstructive CAD, there are an estimated 2-3 million women with existing disease, and a projected 100,000 new cases annually. This places the prevalence, morbidity and costs of coronary vascular dysfunction higher than all female reproductive cancers combined. Study suggests this “female-pattern” of ischemic heart disease is less likely to be recognized and therefore lead to the use of live-saving therapies, suggesting that the “Yentl Syndrome” is alive and well in 2011. Recent data evaluating the impact of guidelines therapy for ischemic heart disease is closing the mortality gap between women and men. Results of many investigators have provided practicing physicians with the ability to translate the findings into clinical care for improved IHD outcomes.

Sex differences in genomics of left ventricular remodeling

Vera Regitz-Zagrosek, M.D., Institute of Gender Medicine/Cancer for Cardiovascular Research, Charité – Universitätsmedizin Berlin

We investigated the influence of Estrogen (E2) and its receptors (ER) on the pathophysiological and molecular mechanisms leading to sex-differences in cardiac remodeling in an animal model of pressure overload (PO) and studied effects of E2 ex vivo in human heart samples. First, we performed transverse aortic constriction (TAC) in male and female wild type mice and mice with genomic deletion of ERβ (ERβ-/-). Nine weeks after TAC, myocardial hypertrophy was significantly more pronounced in WT males than in females. Male WT TAC animals showed a strong increase in cardiac proflibrotic genes and fibrosis. In contrast, female WT hearts were characterized by preservation of energy metabolism. ER β was associated with mitochondrial metabolism in females. Only ERβ-/- male TAC animals went into the apoptotic gene program. Thus, female sex and ERβ contribute to the maintenance of energy homeostasis and limit the development of eccentric cardiac hypertrophy, fibrosis and apoptosis. Second, we investigated the effect of E2 in human heart muscle preparations ex vivo. Treatment of muscle strips with estrogen introduced a genomic response that differed in males and females. In males only, the E3 ubiquitin ligase Mylpi (MRLC interacting protein) was upregulated and its substrate, the myosin regulatory light chain (MRLC) was downregulated due to increased ubiquitination. Correspondingly, E2 treatment of male mice led to reduced CM contractility, which was characterized by increased expression of MYLIP and decreased MRLC. This indicates that E2 has direct deleterious effects in the male heart. We believe it will be useful to unravel the underlying pathways and to identify novel therapeutic targets for heart failure.

A novel 17-beta-estradiol prodrug for the treatment of menopausal symptoms: hot flushes, depression and sleep disorders in animal models

Istvan Merchenthaler, Ph.D., Department of Epidemiology & Public Health and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD

The major menopausal symptoms women seek help for include hot flushes, depression/anxiety, and sleep disturbances. Estrogen therapy has been the treatment of choice to alleviate these symptoms; however, many women cannot take estrogens. Therefore, there is an unmet need for novel, efficacious, and safe therapies. Para-quinol of 17β-estradiol (DHED, based on its chemical structure) is selectively converted to 17β-estradiol (E2) in the mammalian brain, however, such conversion does not occur in the peripheral tissue including the uterus, breast, or the pituitary gland. Thus, DHED’s action is restricted to the brain without causing many of the side effects that can be observed following chronic treatment with estrogens. The current studies were designed to test whether DHED can alleviate hot flushes, exhibit antidepressant and anxiolytic properties, and affect the quality of sleep in animal models. Similarly to E2, DHED reduced naloxone-induced tail skin temperature rise in the rat hot flush model. In the mouse models of depression/anxiety, DHED as
Sex differences in stress response systems: From molecules to mental illness

Debra A. Bangasser, Ph.D., Department of Anesthesiology, The Children’s Hospital of Philadelphia

Stress-related psychiatric disorders, such as depression and anxiety, are twice as prevalent in women as in men. Because these disorders are linked to dysregulation of the stress neuropeptide corticotropin-releasing factor (CRF), sex differences in CRF sensitivity could underlie this disparity. Supporting this idea, neurons in the locus coeruleus (LC), a brain arousal center, are more sensitive to CRF in females versus males. Recently we related these electrophysiological findings to sex differences in CRF receptor (CRF₅) signaling and trafficking. Specifically, the CRF₅ couples more to the GTP-binding protein, Gₛ, in females, an effect that can account for elevated responses to acute stress. Additionally, stressor exposure in rats and CRF overexpression in mice causes CRF internalization in males only, suggesting that females lack this important cellular adaptation. This sex difference was associated with increased LC neuronal firing in female, but not male CRF overexpressing mice. Together, these sex differences in CRF₅ function can render LC neurons of females more sensitive to low levels of CRF and less adaptable to high levels of CRF. This would translate to hyperarousal, a core feature of stress-related psychiatric disorders. Finally, sex differences in the CRF₅ could affect the efficacy of CRF₅ antagonists as therapeutic agents.

This work was supported by USPHS Grant MH084423 and MH092438 to DAB and MH40008 to RJV.

SYMPOSIUM VI: DEPRESSION AND ANXIETY DISORDERS: NOVEL TARGETS FOR SEX SPECIFIC TREATMENTS

Epigenetic regulation of sex differences in stress-related disorders

G.E. Hodes, Ph.D., H.F. Ahn, D.J. Christoffel, S.A. Golden, M. Heshmati, M. Pfau, S.J. Russo. Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine

Women have a higher occurrence of mood and anxiety disorders than men, however, little is known about the biological basis of this disparity. The current studies were undertaken to elucidate the genetic and epigenetic mechanisms that contribute to sex differences in a stress-induced behavioral animal model of depression and anxiety. Exposure to a 6 day varied stressor resulted in depression and anxiety associated behaviors only in female mice. Patterns of gene regulation in the nucleus accumbens of male and female mice exposed to the stressor varied between the sexes with only a 3% overlap. Many more genes were regulated in males compared to females suggesting that resiliency to stress in males is an active process. Investigation of a class of enzymes, DNA methyltransferases and methyl binding domain proteins, involved with suppression of gene expression indicated that males and females had different baseline and stress-induced patterns of transcriptional regulation. In addition, we used a combination of viral-mediated gene transfer and conditional knockouts to achieve brain region specific adult regulation of Dnmt3a and examined its functional relevance to depression and anxiety associated behaviors. These data indicate that Dnmt3a promotes behavioral stress sensitivity differently in males and females. Dnmts and MBDS both contribute to sex specific susceptibility and resilience to stress suggesting that regulators of DNA methylation in the adult brain may be a novel mechanism and potential drug target for sex specific depression and anxiety disorder treatment. Funding source: NIMH 1R01MH090264-01A1 to SJR and NIDA 5TDA07135-28 to GEH.
Differential sex-specific effects of the PACAP (ADCYAP1R1) and androgen (SRD5A2) pathways with Posttraumatic Stress Disorder in a highly traumatized population

Kerry Ressler, M.D., Ph.D., Howard Hughes Medical Institute, Emory University

Multiple mechanisms may differentially mediate sex differences in mood and anxiety disorders. This presentation will examine two different genetic studies which demonstrate differential sex-specific associations with posttraumatic stress disorder (PTSD) symptoms. We examined 44 single nucleotide polymorphisms (SNPs) spanning the pituitary adenylate cyclase activating peptide (PACAP, encoded by ADCYAP1) and its PAC1 Receptor (encoded by ADCYAP1R1) genes in >1200 individuals, demonstrating a sex-specific association with PTSD. A single SNP in a putative estrogen response element within ADCYAP1R1, rs2267735, predicts PTSD diagnosis and symptoms in females only. We will present data demonstrating evidence of estrogen dependent expression of ADCYAP1R1 in mice and humans. We will also present new data examining potential estrogen response element mechanisms regulating ADCYAP1R1 expression. We also examined a non-synonymous, SNP in the gene coding for steroid 5-

Objective: Gender-oriented medicine has to do with a broad variety of topics, where there are differences between men and women in etiology, diagnosis, treatment and somatic and psychological responses of patients. Fertility has a special place within the wide range of these subjects.

Psychological effects on the fertility process: The relationship between the physiological and the psychological factors is complex and partly unknown. Yet, enough data has accumulated to show that psychological factors have an important role in fertility treatment. A central psychological factor is stress, whose influence may be critical. For example, it is well known that in infertility treatment the quality and quantity of the sperm as well as the quality and quantity of the ova have a great influence on the success of the treatment.

Gender differences in attitudes and emotional responses to infertility: A fairly large number of studies have found differences between men and women in their responses to infertility and their ways of coping with the problem. Findings show, inter alia, that the drive for parenthood is usually higher among women than among men, and women are generally more willing to make sacrifices for materializing this drive. Findings also show that women tend more than men to express their frustrations and difficulties verbally. There are also gender differences in the psychological modes of coping with the situation.

The importance of understanding gender differences for the success of infertility treatment: The psychological aspects of infertility treatment must be tailored to the characteristics of the specific couple. It was found that in some modes of coping, the husband’s coping style affects that of the wife, and vice versa. The treatment must, therefore, take into account the physiological and psychological interaction between the couple. Extensive survey of the relevant literature and the results of our own studies will be presented.

Unique characteristics of anxiety and depression among couples undergoing in vitro fertilization treatment

Dov Feldberg, M.D., Helen Schneider Hospital for Women, Rabin Medical Center and Tel Aviv University Faculty of Medicine

In vertebrates, gonadal steroids have key roles in organizing and activating sex differences in the brain. However, important recent work...
has clearly demonstrated that hormone-independent, “genetically driven” mechanisms also have critical roles in the sexual differentiation of the nervous system. Interestingly, this situation is reminiscent of invertebrate sexual differentiation, in which master regulator genes act cell-autonomously to regulate the development and function of the nervous system. I will review our current understanding of sex differences in the nervous system in the fruit fly Drosophila and the nematode C. elegans, both of which have lent numerous key insights into the genetic control of neural development and behavior. Importantly, recent studies reveal that there may well be genetic conservation of some of the mechanisms used by both vertebrates and invertebrates to translate genetic sex into the modulation of neural development and function.

Sex differences in insects: beyond fru and haplodiploidy

Susan E. Fahrbach, Ph.D., Department of Biology, Wake Forest University, Winston-Salem, NC, USA

Sex differences in insect behavior are well-documented but most of the million+ species of insect of course have not been studied from the essential perspectives of neuroendocrinology and neuroanatomy. This presentation will present case studies of several key species that are exceptions to this rule: the fruit fly, Drosophila melanogaster (neural and genetic substrates of male sexual behavior); the hawkmoth, Manduca sexta (sex-specific olfactory receptor cells, and how they organize the developing brain); and the honey bee, Apis mellifera (brain basis of sex differences in reproductive and non-reproductive behaviors). Major themes include the role of sex-specific cell death and the importance of sexually-dimorphic sense organs during development of the central nervous system plus, relative to vertebrates, the lack of a major role for hormones in promoting the development of sex differences. This material is based in part upon work supported by the National Science Foundation.

Fishing for sex differences

Daniel A. Gorelick, Ph.D. and Marnie E. Halpern, Ph.D., Carnegie Institution for Science, Department of Embryology

The zebrafish (Danio rerio) is a useful vertebrate genetic model for the study of sexually dimorphic steroid hormone receptor activity. Estrogens, progestogens and androgens, as well as their receptors, are conserved, and many small molecule endocrine disruptors are effective and easily administered in fish water. The organization of the hypothalamo-pituitary-gonadal axis is similar to that of mammals. Zebrafish embryos and larvae are clear and develop outside of the mother, allowing for live imaging of fluorescent reporters, while the small size and high fecundity of adults enables systematic testing of hundreds of subjects in behavioral assays or in genetic screens. We sought to capitalize on these advantages and establish the zebrafish as a genetic model to investigate sexually dimorphic activity of estrogen receptors. To visualize estrogen receptor activation in vivo, we developed stable, transgenic zebrafish containing five consecutive estrogen response elements (EREs) upstream of green fluorescent protein (GFP). The 5xERE:GFP reporter is specific, sensitive and able to detect exogenous and endogenous estrogens, depending on developmental stage. We identified differences in the number of estrogen responsive cells in the central nervous system between males and females. These transgenic lines will facilitate screens to identify genes and small molecules that regulate estrogen receptor transcriptional activity and the formation of estrogen responsive neurons. We also demonstrate that the reporter lines serve as sentinels for aquatic pollution and as models for studying the effects of endocrine disruptors on embryo development and organ formation.

Neural sex differences and similarities in the control of vocal behavior in songbirds

Gregory F. Ball, Ph.D., Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD

One of the most dramatic neural sex differences ever described in the vertebrate brain relates to the brain areas that control the learning and production of song in songbirds. Temperate zone male songbirds tend to form territories in the spring and sing a robust complex vocalization called its song which functions to attract females and repel competitors. This song is learned in a manner akin to human language. A specialized neural circuit was described that regulates the learning, perception and production of song. Nottebohm and Arnold described dramatic male-biased sex differences in the volume of key forebrain nuclei in zebra finches and canaries. Sex differences in the song system have been investigated in about 25 songbird species that exhibit a variety of patterns of sex differences in behavior. Based on an analysis of these species a pattern emerges indicat-
ing that the degree to which there is a sex difference in behavior is reflected in the degree to which there is a sex difference in the volume of the song nuclei. Species that live in the tropics where the male and female produce a single song in a duet are especially illustrative as in these species male/female differences in brain are reduced compared to temperate zone species. One feature of the male songbird brain is the occurrence of song-specific neurons. These are neurons that respond preferentially and specifically to the bird’s own song (BOS). Recently Eric Fortune, Melissa Coleman and myself (Science 2011 334: 666-670), studied the plain-tailed wren in Ecuador, a duetting species, and asked whether neurons in the male and female brain responded only to the part of the song they produce, their mate’s song or to the joint song. The neural response to playback is clear, cells in HVC are tuned preferentially in both sexes to the joint song as compared to the part of the song produced by the male or the female. Thus in duetting species where males and females cooperate to produce a single song the brain has cells that are similarly tuned in males and females to mediate this complex cooperative behavior.

SYMPOSIUM VIII: POST-TRAUMATIC STRESS DISORDER (PTSD) AND ONE’S SEX

Experiences of sexual trauma during military service: implications for the gender-specific risk of PTSD

Amy E. Street, Ph.D., National Center for PTSD, VA Boston Healthcare System and Department of Psychiatry, Boston University School of Medicine

Despite growing awareness of the changing scope of women’s roles in current combat operations, significant questions remain about women’s deployment experiences and post-deployment adjustment. Further, combat-exposed women Veterans represent a new and important population for understanding the gender-specific phenomenology of posttraumatic stress disorder (PTSD). Accordingly, the objectives of this investigation were to quantify the gender-specific frequency of deployment stressors (including combat and sexual harassment), the gender-specific frequency of post-deployment mental health conditions, and the gender-specific associations between deployment stressors and PTSD. Data are from a national mail survey of 2,344 female and male Veterans, randomly sampled within gender, deployed in support of the wars in Afghanistan and Iraq. Women were much more likely to report exposure to sexual harassment and less likely to report exposure to combat. Women and men were about equally likely to report symptoms consistent with probable PTSD and symptomatic anxiety, while women were more likely to report probable depression and less likely to report clinically significant alcohol use. Controlling for identified confounders, odds ratios representing the associations between deployment stressors and PTSD were nearly identical for women and men. These findings suggest that the gender-specific risk of PTSD is not absolute, but instead differs substantially by trauma type and must be examined within different trauma type-exposed groups. Most importantly, these results suggest our nation’s growing population of female Veterans appear as resilient to deployment stressors as our nation’s male Veterans.

Gender differences in combat-related stressors and their association with postdeployment mental health among U.S. OEF/OIF veterans

Dawne Vogt, Ph.D., National Center for PTSD, VA Boston Healthcare System and Boston University School of Medicine

Though the broader literature suggests that women may be more vulnerable to the effects of trauma exposure, most available studies on combat trauma have relied on samples in which women’s combat exposure is limited and analyses that do not directly address gender differences in associations between combat exposure and postdeployment mental health. Female servicemembers’ increased exposure to combat in Afghanistan and Iraq raises the question of whether there are gender differences in the mental health consequences associated with combat-related stress exposure. The current study addressed these research questions in a representative sample of 340 female and 252 male OEF/OIF Veterans who had returned from deployment to Afghanistan or Iraq within the previous year. Participants completed measures of four dimensions of combat-related stress from the Deployment Risk and Resilience Inventory (DRRI), as well as measures of post-deployment mental health including PTSD symptoms (measure by the PCL), depression and substance abuse (measured by the BASIS-24), and mental health functioning (measured by the VR-12). As expected, women reported slightly less exposure than men to most combat-related stressors, but higher exposure to other stressors (i.e., prior life stress, deployment sexual harassment). No gender differences were observed in reports of perceived threat in the war zone. Though it was hypothesized that combat-related stressors would demonstrate stronger negative associations with postdeployment mental health for
women, only one of 16 stressor X gender interactions achieved statistical significance and an evaluation of the clinical significance of these interactions revealed that effects were trivial. The finding that women experience similar levels of combat stress as men highlights the need for increased attention to women's combat experiences in the assessment and treatment of returning OEF/OIF Veterans. The lack of clinical significant differences in associations between combat stressors and postdeployment mental health suggests that female OEF/OIF servicemembers may be as resilient to combat-related stress as men.

Sex differences in sleep-related predictors of PTSD

Thomas A. Mellman, M.D., Department of Psychiatry, Howard University College of Medicine, Washington, DC

Sleep disturbance is a prominent clinical feature of PTSD and appears to may contribute to its onset and maintenance. Abnormal patterns of dreaming have inspired specific interest in REM sleep. Previous studies have suggested that reduced slow wave sleep is found in men with PTSD and impaired sleep maintenance with PTSD has been a more consistent finding of a limited number of studies of women. We recently analyzed data from our prior study of sleep following traumatic injuries and our ongoing with trauma-exposed young adult urban African Americans. The first study indicated associations between impaired sleep maintenance and the development of PTSD in only women. In both studies the mean duration of continuous REM segments was significantly shorter among the participants developing PTSD and those with established PTSD in men and women. These findings support the hypothesis that disrupted REM sleep contributes to PTSD in both sexes.

Sex differences in neurobiology with potential relevance to PTSD risk, symptom severity, and chronicity

Ann M. Rasmusson, M.D., Suzanne Pineles, Ph.D., Erica Scioli, Ph.D., VA National Center for PTSD, Women’s Health Science Division, VA Boston Healthcare System, and Boston University School of Medicine

Stress-induced changes in a number of neurobiological factors are associated with acute changes in mood state, brain function, and behavior. Many of these neurobiological factors are influenced by gender; in women, they are also influenced by menstrual cycle phase and reproductive status. Relevant neurobiological factors include: adrenal steroids such as dehydroepiandrosterone (DHEA) and its sulfated derivative, DHEAS, as well as cortisol; other neuroactive steroids such as allopregnanolone and androsterone, derivatives of progesterone and testosterone, respectively, which potently and positively modulate brain gamma amino butyric acid (GABA) receptor function; peptides such as neuropeptide Y; and classic neurotransmitters such as serotonin, norepinephrine, and GABA. Gonadal hormones, including estrogen, progesterone, and testosterone influence the neurophysiology of these other stress hormone systems and are also influenced by stress. This presentation will review and distill clinical and basic research addressing the potential means by which such sex-related neurobiological factors may influence peritraumatic stress reactions and PTSD symptom severity, as well as the conditional risk for development and maintenance of chronic PTSD, which to date appears to be greater in women.

SYMPOSIUM IX: SEX DIFFERENCES IN GLOBAL HEALTH

Sex and gender aspects of tuberculosis: a review

Anna Thorson, M.D., M.P.H., Ph.D., Associate Professor, Division of Global Health, Department of Public Health Sciences, Karolinska Institutet, Sweden

Tuberculosis (TB) shows a marked difference between men and women. In 2010 an estimated 800,000 men and 320,000 women died from TB. Based on case notification figures, more men than women are diagnosed with active tuberculosis, although this pattern is not consistent globally. This may be an accurate reflection of a higher incidence of TB among men or it may, in some contexts, reflect gender barriers to accessing national TB programs and health care systems. Differences between men and women have also been demonstrated for detection of TB, progression to disease after infection, and disease outcome, as well as the social consequences of the disease.

Both biological sex and socially constructed gender differences are important determinants of health and interact to produce differences in risks and vulnerability, in health-seeking behavior, and in the ability of individuals to protect their own health. Furthermore, these factors interact with other social determinants of health such as social class, ethnicity, and urban or rural residency. In spite of this, research
addressing the combined effects of sex and gender differences has been a marginalized area, and there are important research gaps, especially in relation to the increasing feminization of the HIV epidemic, where a quarter of all HIV deaths are estimated to be linked directly to TB. While global TB incidence has reversed and there is great progress in relation to the MDGs, there are still important regional variations. The spread of the HIV pandemic has had a profound impact on the epidemiology of TB in sub-Saharan Africa, where HIV rates among young women can be three to six times higher than among men of the same age group. The corresponding high rates of co-infection with HIV and M. tuberculosis is causing important gender specific vulnerability to TB.

Data disaggregated for sex and age need to be examined at national and district levels, in order to reveal dynamic processes such as the interaction with HIV/AIDS and to assess the role of gender-related factors at all stages, while equal efforts are needed to further investigate the sex specific immunological responses to infection and disease progress.

Sex differences in response to measles and measles vaccine

William J. Moss, M.D., M.P.H., Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

Measles provides an intriguing example of sex differences in response to infection. The World Health Organization rescinded the recommendation that young children receive high-titer measles vaccine in 1992 following evidence that, in certain regions of the world, girls receiving this vaccine had increased mortality compared with those receiving standard-titer vaccines. Evidence for increased mortality among girls following wild-type measles virus infection is suggestive but inconclusive. Among persons of different ages and across different regions (primarily in the Americas and Europe), measles mortality in girls was estimated to be 5% higher than in boys. Although older historical data and recent surveillance data did not identify similar sex differences, if true, the higher mortality in girls is in contrast to most other infectious diseases in which disease severity and mortality is higher in males.

Males, females and children’s inflammatory responses during and after malaria infection: sex and sex hormones associated with chronic inflammation

OraLee Branch, Ph.D.12, Mario Hoenemann, M.D.1, Jonathan Merola1, Jean N. Hernandez, M.D.2

1New York University School of Medicine, Department of Parasitology, New York, NY, United States and 2Universidad Nacional Amazonia Peruana, Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia, Iquitos, Peru

Malaria infections caused by malaria leads to an inflammatory response which is necessary to overcome the infection. The inflammation must be halted soon after infection to limit pathology. An inflammation response can be halted by switching to a Th2 anti-inflammatory response. Earlier studies suggest pubescent boys have a higher inflammatory response and pathology in malaria infections than boys of the same age pre-pubescent. We aimed to study the dynamics of the inflammation response by gender and by the hormone DHEAS levels. In Iquitos, Peru we sampled individuals prospectively regardless of symptoms to obtain blood samples before, during and after malaria infection. We tested 205 malaria-infected infected individuals matched by age, sex and parasite density of infection. We measured pro-inflammatory, CRP, IL-1, IL-6, TNF-α, and IFN-γ and anti-inflammatory IL-4 and IL-10, cytokines. We also assessed blood marker levels of DHEAS, Leptin, EPO, transferrin, and ferritin. Of 60 individuals who all had a similar level of inflammation response at time of infection (Day 0), we had 16 female adults, 25 male adults and 19 children (<15 years old). We grouped individuals by cytokine responses 30 days after treatment of infection. There were three groups of post-infection levels of cytokines: group-H "halted with negligible levels of inflammatory responses after infection", group-C "chronic inflammation without anti-inflammatory cytokines", and group-M "mixed with anti-inflammatory and medium to high levels of inflammatory cytokines". The males had higher post-infection levels of inflammatory cytokines. Of the 15 with a clear sustained Th1 response without anti-inflammatory cytokines, called group-C, 67% were males. Females and children were more likely to have halted their inflammatory response: of the group-H only 22% were male. The gender difference between group-H and group-C was significantly different (p<0.05). Interestingly, the women in group-C (“chronic inflammation”) had significantly lower DHEAS levels and higher leptin levels that the average for women overall. Group-M (n=27) was a mix of female and male individuals (not significantly different). We will present how sex and DHEAS levels
might explain variation in the group-M and other groups. We find sex and sex hormone associated differences in the inflammatory response dynamics to malaria infection.

Sex differences in HIV-1 immunopathogenesis

Elizabeth Connick, M.D., Division of Infectious Diseases, Department of Medicine, University of Colorado Denver

Background: HIV-infected women have higher CD4+ T cell counts and lower viral loads than men, but progress at similar rates to AIDS in the absence of treatment. Mechanisms underlying these differences are not understood, nor why better prognostic markers in women fail to confer a survival advantage. Some data suggest that female sex hormones alter HIV-1 replication in vitro and in vivo. Differences in immune activation and HIV chemokine receptor expression have been hypothesized to account for sex differences in HIV pathogenesis.

Methods: We evaluated inguinal lymph nodes from untreated HIV-infected women (n=28) and men (n=27) not on antiviral therapy to determine 1) whether sex differences in CCR5 expression or immune activation account for lower viral loads in women and 2) if women produce fewer virions per infected cell than men. Disaggregated LN cells were analyzed by flow cytometry. Frequencies of virus-producing cells per mm2 of LN (VPC) were determined by in situ hybridization for HIV RNA, and plasma viral load (VL) by COBAS Taqm an (Roche). Model estimates (95% CI) are reported from linear and negative binomial generalized linear regressions. Unadjusted results are expressed as medians.

Results: VL (log10 copies/mL) was lower in women (3.85) than men (4.49; p=0.01). In LN, %CCR5+CD4+ T cells and %CCR5+DR+38+CD4+ T cells, but not density of CCR5, were lower in women vs. men (10% vs. 16%, p=0.03; and 40% vs. 44%, p=0.07, respectively). After adjusting for CD4, race, and age, neither CCR5 density nor %CCR5+ on either CD4+ or DR+38+CD4+ T cells was predictive of VL or VPC (p>0.4). %DR+38+CD4+ (p=0.9) and %DR+38+CD8+ T cells (p=0.7) did not differ by sex. VPC were lower in women (0.29) vs. men (0.54; p=0.04). After adjusting for sex, CD4, log10 LN weight, and VPC, women had 0.56 (0.39, 0.73; p=0.002) lower VL than men.

Conclusions: Sex differences in VL cannot be explained by differences in CCR5 expression or immune activation in lymphoid tissues. Sex differences in VL persist even after controlling for VPC suggesting that women produce fewer HIV virions per productively infected cell than men.

These studies were funded by the NIH (R21HD051450, R21HD051450-02S1; and the University of Colorado Center for AIDS Research, AI51550).

CLOSING CAPSTONE LECTURE

Maternal and paternal gene networks in the male and female brain

Christopher Gregg, Ph.D., New York Stem Cell Foundation-Robertson Investigator; Assistant Professor, Neurobiology and Anatomy, University of Utah School of Medicine

Genomic imprinting results in preferential gene expression from paternally versus maternally inherited chromosomes. We used a genome-wide approach to uncover sex-specific parent-of-origin allelic effects in the adult mouse brain. Our approach utilizes RNA-Seq analysis of the transcriptome of mice generated by reciprocal crosses of the distantly related mouse strains CastEii and C57BL/6J. We used single nucleotide polymorphisms in the RNA-Seq data to distinguish gene expression from maternally versus paternally inherited alleles. Our study identified preferential selection of the maternally inherited X chromosome in glutamatergic neurons of the female cortex. Moreover, analysis of the cortex and hypothalamus identified 347 candidate autosomal genes with sex-specific parent-of-origin allelic effects influencing gene expression. In the hypothalamus, sex-specific parental effect genes were mostly found in females, suggesting parental influence over the hypothalamic function of daughters. We show that Interleukin 18, a gene linked to diseases with sex-specific prevalence, is subject to complex, regional, and sex-specific parental effects in the brain. We have begun to extend these findings to understand the impact of parental effects on diet-induced obesity in male and female offspring. Our results demonstrate that complex maternal and paternal effects differentially influence the physiology and gene expression of sons versus daughters. Parental effects thus provide new avenues for investigation of sexual dimorphism in brain function and disease.
POSTER SESSION I
Friday June 8, 2012
1:00 – 2:30 pm

POSTER ID: 801

Sex-differences in pain perception in patients with cardiac syndrome X and patients with obstructive coronary artery disease

Abstract Presenter: Karolina Nowinski

Other Authors: Stefan Grass, Hao Jingxia, Mårta Segerdahl, Rolf Hallin, Susanna Wiesenfeld-Hallin, Karin Schenck-Gustafsson, M.D.

Author Affiliations: 1Center for Gender Medicine, Department of Medicine, Cardiac Unit, Karolinska Institutet, Stockholm, Sweden; 2CLINTEC, Division of Anesthesia, Karolinska University Hospital, Huddinge; 3Department of Laboratory medicine, Karolinska Institutet, 4Clinical neurophysiology, Karolinska University Hospital, Huddinge

Introduction: Cardiac syndrome X is a condition characterized by chest pain and signs of ischemia during exercise electrocardiogram (ECG), but with normal coronary angiography. Two hypotheses have been suggested to explain the chest pain in patients with cardiac syndrome X: 1) the ischemic hypothesis, defined as abnormal coronary microvascular function and 2) the non-ischemic hypothesis, with increased pain perception and myocardial hypersensitivity. Apart from being associated with suffering, disability and health care costs, it is also recognized that the prognosis is not as benign as previously thought. The objective of this study was to investigate if somatosensory thresholds were altered in patients with syndrome X compared to patients with coronary heart disease and healthy controls.

Methods: In total 47 patients 48-71 years of age were included. Coronary heart disease (CHD) was defined as any of the following conditions: previous myocardial infarction, previous coronary artery bypass grafting, percutaneous coronary intervention, symptoms of angina pectoris and a pathological coronary angiography. Syndrome X patients were defined as having angina on exercise-ECG and ST segment depression (at least 1 mm in minimum 2 leads), but normal coronary angiography. Normal controls consisted of age-matched healthy volunteers, non-smokers, without previous history of CHD.

Before the start of the study a general examination by a physician was performed including exercise-ECG. Mechanosensory and pain thresholds in the skin were measured with a series of von Frey filaments exerting pressure of 0.003-152.2 g. The first perception of pressure or pain was recorded and the mean value of three measurements was considered as threshold. Testing was done bilaterally on the thorax, in the area where the patients normally localized their pain. To reduce variability, testing was repeated at a second visit, with at least a one week interval. The sensory data from the first and second visit were pooled and analyzed. Statistical analysis was done with the Mann-Whitney U test after confirming that the parameters were not normally distributed (Shapiro-Wilk test).

Results: The patients, mean age 62, were tested for sensory parameters: 23 healthy, 14 CHD patients, and 10 syndrome X patients. Women (n=32) had significantly lower pain thresholds compared to men (p<0.05, n=15). Pressure perception thresholds were not statistically different.

Cardiac syndrome X patients had significantly lower pressure perception and pain thresholds compared to normal controls and CHD patients, p<0.005. This difference was still significant (p<0.05) when men were excluded from the analysis in order to reduced risk of bias due to the lower pain thresholds in women.

Conclusion: This study showed that patients with cardiac syndrome X had significantly lower mechanical pressure perception and pain thresholds compared with healthy controls and CHD patients. The difference observed could be due to altered sensitivity of peripheral mechanoreceptors and nociceptors and/or central mechanisms. There was also a difference in pain sensitivity between men and women, a phenomenon observed in previous studies.
Women’s awareness of cardiovascular risk: preliminary results of a northern Italian provincial survey

Presenting Author: F. Buffoli
Other Authors: G. Giannella, M.R. Ferrari, F. Agostini, G. Fornasa, M.C. Brunazzi, R. Zanini
Author Affiliations: Cardio-thoracic Department, Carlo Poma Hospital; Preventive Medicine Department (ASL); Federfarma (National Federation Pharmacy Holders), Mantova, Italy

Background: Although cardiovascular disease represents the leading cause of death in Europe and accounts for the highest mortality rates in female sex, different studies remark a very poor awareness regarding cardiovascular risk among women.

Aim of the study: prior to the development of a gender oriented local preventive strategy of intervention, we carried out a survey among female population ranging from 40 to 60 years old, in order to evaluate their level of awareness cardiovascular risk.

Methods: in the period 4-27 of May, 2011, a questionnaire including 29 items (6 demographics, 8 about personal history, 8 about awareness of leading causes of death, 8 about knowledge of CV risk factors, 6 about personal risk factors and lifestyle), was delivered to a sample of women ranging from 40 to 60 years old in 131/133 (98.5%) pharmacies of Mantova city and its Province, and web-transmitted to the Provincial Department of Preventive Medicine for analysis.

Results: 2623 questionnaires were filled in and sent for analysis by 94.25% of a sample of 2783 women aged 40-60 years old, representative of the female population in a Northern Italian Province in which cardiovascular disease is the leading cause of morbidity and mortality. Correction for age and educational level unaffected the results, highlighting a question that cross society. In assessing a model of gender-oriented cardiovascular prevention, these data appear unavoidable, with regards to disclosure and application.

Conclusion: our data support poor awareness of cardiovascular risk and low level of perception of cardiovascular risk factors, among a sample of 40-60 years old women, representative of the female population in a Northern Italian Province in which cardiovascular disease is the leading cause of morbidity and mortality. Correction for age and educational level unaffected the results, highlighting a question that cross society. In assessing a model of gender-oriented cardiovascular prevention, these data appear unavoidable, with regards to disclosure and application.

Hypertension as cardiovascular predictor in post-menopausal women: the long-term follow-up of the “Bene Essere Donna” patients

Presenting Author: Ylenia Bartolacelli, M.D.
Other Authors: Elisa Giubertoni, Giorgia Origliani, Maria Grazia Modena, M.D.
Author Affiliations: University of Modena & Reggio Emilia, Department of Cardiology, Modena, Italy

Objectives: The aim of this study was to examine the association between cardiovascular events and the major cardiovascular risk factors in a cohort of initially asymptomatic post-menopausal women.

Background: Conventional major cardiovascular risk factors (cigarette smoking, hypercholesterolemia, hypertension, diabetes, and age) fail to explain nearly 50% of cardiovascular events in the general population. This topic was virtually unexplored in the specific population of postmenopausal women. Defining the magnitude of future risk for the development of clinical events is a major focus of effective primary prevention.

Methods: We conducted a prospective study on 603 post-menopausal women, age 62 +/- 6 years, followed-up for a mean period of 82 +/- 28 months (range 57 to, 108 months). The events considered were the onset of hypertension, diabetes and major cardiovascular events intended as myocardial infarction, hospital recovery because of unstable angina, acute pulmonary oedema, acute pulmonary embolism, sudden cardiac death, ictus or transient ischemic attack.
Gender differences in characteristics and outcome of unselected implantable cardiac defibrillator receivers: an observational cohort analysis

Abstract Presenter: Marco Zavatta, M.D.¹

Other Authors: Vincenzo Livio Malavasi, M.D.¹ Maria Grazia Modena, M.D.¹

Author Affiliations: ¹Modena University Hospital, Modena, Italy

Introduction: The effectiveness of sudden death prevention in patients affected by left ventricular systolic dysfunction (LVSD) with automatic implantable cardioverter/defibrillator (ICD) has been demonstrated in multiple randomized clinical studies. Previous studies have documented important sex differences in ICD use, but there are still limited data regarding the influence of gender on outcome of patients receiving ICDs for primary prevention, although recent trials suggest no gender differences in outcome of patients with underlying heart disease. The majority of patients enrolled in clinical studies regarding ICD therapy were Caucasian males, and women appeared to be largely underrepresented. Moreover female patients showed relevant differences in baseline characteristics, such as age at presentation and weight of coronary artery disease on LVSD. The question may fairly be asked, then, whether women have the same survival benefit and favorable outcomes compared to men.

Materials and Methods: We observed consecutive patients that along 4 years (2008-2011) have been referred to our center to undergo ICD implantation. Our interest have been focused on gender differences regarding baseline characteristics and outcome. Genders were compared with bivariate tests for unadjusted analyses. Then, to adjust for potential confounders, we build a non-parsimonious propensity score for gender using all covariates potentially impacting before or on device implantation.

Results: During observation, 59 major adverse events were recorded (9.8% of the entire population). Cox analysis revealed that, between conventional major cardiovascular risk factors, the only independent predictor of prognosis in postmenopausal women resulted the presence of hypertension (odds ratio: 10.22; p < 0.001) and particularly the strength of hypertension considered as number of drugs used. In fact a rising number of medications used correlates with a higher baseline cardiovascular risk (Person=0,42, p<0,001) and with a largest incidence of events (Odds Ratio: 1,26; C.I. 1-1,6, p=0,04).

Conclusions: In post-menopausal women, only the presence of hypertension and its strength provide independent prognostic information regarding the risk of developing adverse cardiovascular events.

Poster ID: 805

Gender differences in heart transplant: how to ameliorating quality of life of men and women

Abstract Presenter: Chiara d’Agostino, M.D., Ph.D.¹²

Other Authors: Giuseppe Feltrin¹, Nicola Caretta³, Antonio Gambino¹, Carlo Foresta¹ and Gino Gerosa¹²

Conclusions: The follow-up observation showed a similar prevalence of deaths and arrhythmic events in men and women, postulating a similar benefit from ICD implant. The relative number of female patients who received ICD in our population is comparable with data from major registries and clinical trials, suggesting that women are more likely to be undertreated than underrepresented in clinical trials (possibly due to unfavorable characteristics), as previously postulated. In our population, women showed a significantly greater prevalence of nonischemic cardiomyopathy. Women showed a significantly higher prevalence of left bundle branch block (LBBB) pattern at surface ECG. The meaning of this feature is uncertain. Previous studies have demonstrated that women develop HF signs and symptoms at a more advanced stage of the disease. Therefore LBBB pattern could be another marker of advanced left ventricular desynchronization. Finally our population data confirmed that the presence of a dedicated HF clinic improves guidelines recommendation adherence in treatment delivery and selection of suitable patients for ICD therapy.
Gender mismatch in solid organ transplants has been investigated since a long time and it is well known that it is strongly related to immunological problems. However, gender issues in clinical transplantation affect outcomes at many levels beyond immunologic concerns: many diseases leading to transplantation are predominantly expressed in one gender, access to transplantation may be affected by gender, and women mortality is higher after heart transplant. Moreover, the way of accepting transplant can be affected by personal thinking, but also gender differences may determine different approach.

Heart failure and transplanted patients need not only medical support, but also psychological and social help. For this reason, we are strongly convinced that we have to differentiate our approach, in order to improve the quality of life of our patients.

In Padova heart centre, we are leading two projects related to gender issues; the first is concerning male transplanted patients and analyze their higher incidence of erectile dysfunction; the second, in progress, consists in the creation of a “Health centre for medical, psychological and social problems in the heart transplanted women.”

I. Vascular erectile dysfunction (ED) is expression of a systemic vascular disease and in particular of endothelial dysfunction. Dysfunctional endothelium plays also a significant role in the onset and progression of coronary artery vasculopathy (CAV). A total of 77 male heart transplanted patients (HTx) (mean age 61.6 + 10.6 years) were enrolled in the study. All subjects underwent medical history, physical examination and biochemical blood tests, penile and vascular echocolor doppler ultrasonography and coronary angiogram. Incidence of ED was 24% before HTX and increased up to 65% after. Post ischemic cardiomyopathy was an indication to HTx in ED group more frequently than non-ED group (45.1% vs 20%). ED patients showed lower peak systolic velocity (PSV), higher cavernosal intima-medial thickness (IMT), higher prevalence of cavernosal plaques (26.7% vs 5.2%, p<0.05), higher prevalence of peripheral vascular disease (60.87% vs 26.1%, p<0.05) and CAV (45.8% vs 25.8%, p<0.05). Presence of CAV was associated with higher prevalence of cavernous disease (71.4% vs 30.4%, p<0.05). Cavernous plaque and testosterone plasma levels were statistically associated with CAV. ED HTx patients with cavernous artery disease might be considered at increased risk for developing CAV.

II. The “Centre for medical, social and psychological problems of female heart transplanted patients” is supporting our female patients after transplantation. Too often, they meet problems related to their identity and their family, difficulties to find an appropriate job and can necessitate of a social support to understand their rights. Moreover, women can have problems concerning pregnancy. For this reason, this centre, in collaboration with different specialists, as gynaecologist, social assistant, legal expert, psychologist and dietist, that can intervene case by case, has the goal of supporting women in their re-borning process. Women underwent to medical history, physical examination, biochemical blood tests and coronary angiography. We have the double purpose to ameliorating women’s quality of life and to evaluate role of immunosuppressant drugs on pregnancy and oogenesis.

POSTER ID: 806

Sex differences in heart failure during acute myocarditis are mediated by testosterone-induced soluble ST2

Abstract Presenter: Michael J Coronado, Ph.D.

Other Authors: Eric W Kostuk1, Djahida Bedja1, Madeleine W Cunningham2, Eric D Abston1, Adriana Bucek1, J. Augusto Fisancho1, Kathleen L Gabrielson1, Deepti Malhotra1, Shyam Biswal1, Leslie T Cooper1, and DeLisa Fairweather1

Author Affiliations: 1Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 2Department of Microbiology and Immunology, University of Oklahoma, 3Department of Cardiovascular Disease, Mayo Clinic MN

Men who develop acute dilated cardiomyopathy (DCM) from myocarditis have more severe disease and less robust recovery than women. Soluble ST2 (sST2), an interleukin (IL)-1 receptor (R) family member, is associated with greater mortality in patients with acute myocardial infarction or chronic heart failure. In this study we investigated whether alterations in the IL-1R family members sST2, IL-33 or IL-1β could explain gender differences in recovery from acute DCM due to myocarditis. We identified 43 patients from Mayo
Clinic who were diagnosed with acute myocarditis, prospectively enrolled into registries, and had available stored sera. Serum sST2 was higher in men than women with myocarditis (p = 0.019). Serum sST2 correlated positively with New York Heart Association class in men (p = 0.0001) and negatively with ejection fraction (EF) in all subjects (p = 0.0001). To investigate the cause of sST2 elevation we used an autoimmune model of coxsackievirus B3 myocarditis and found that elevated serum sST2 in male BALB/c mice (p = 0.005) correlated negatively with EF (r² = 0.19) and predicted progression to DCM. Gonadectomy with testosterone (Te) replacement in male mice revealed that Te decreased heart function while increasing cardiac inflammation and IL-1β and serum sST2. Treatment of male mice with recombinant IL-1 increased serum sST2 during myocarditis (p = 9×10⁻⁶). We show for the first time that elevated serum sST2 is associated with progression to DCM and heart failure following myocarditis in males, and we provide evidence that IL-1β can elevate sST2 levels. This study was supported by funding from NIH R01 HL087033 to Dr. Fairweather and NIH R01 HL56267 to Drs. Cooper and Cunningham, and by a Leder Family Foundation Grant to Dr. Cooper.

POSTER ID: 807
Exploring the sex differences in susceptibility of stress-induced cardiomyopathies: Role of underlying adrenergic-derived myocardium

Abstract Presenter: Steven N. Ebert, Ph.D.¹
Other authors: Candice Baker¹, Ibrahim Abukenda¹, Chaunhi Van¹, Kingsley Osuala¹
Author Affiliations: ¹Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL

Stress-induced cardiomyopathies such as Tako-Tsubo or Broken-Heart Syndrome preferentially affect postmenopausal women following severe emotional trauma. Patients with this type of stress-induced cardiomyopathy typically present with chest pain and other symptoms reminiscent of those associated with myocardial infarction, except without the associated coronary occlusion. Instead, they show profound left ventricular dysfunction, with apical, mid, and sometimes basal regions of left ventricular muscle displaying hypo- or akinesis. These patients typically have high circulating plasma catecholamines when presenting. The biological basis for why postmenopausal women are more susceptible to this type of cardiomyopathy is not clear, though several theories have been proposed. In the present study, we provide a new theory and evidence suggesting that adrenergic-derived myocardium may serve as an anatomical substrate for these syndromes. Using a transgenic knock-in mouse model to map the fate of adrenergic cells in the developing heart and based on expression of the adrenaline biosynthetic enzyme, Phenylethanolamine n-methyltransferase (Pnmt), we show that adrenergic-derived cells within the heart become predominantly (80-90%) localized to the left side of the heart in the adult mouse. In particular, we show that Pnmt-derived cells constitute significant bands of myocardium concentrated in the apical, mid, and basal regions of the left ventricle (LV). Ongoing work in our laboratory is investigating anatomical differences in the distribution of these cells at different ages. We also present preliminary physiological data using echocardiography to measure LV function in adult male and female mice before and after injection of adrenaline (50 μg/kg, i.p.) using high-resolution ultrasound imaging (Vevo2100; Visualsonics, Inc.). This stress test was administered while the mice were anesthetized with isoflurane, and ultrasound data were collected in real time. Our preliminary results show that female mice displayed significantly decreased LV responsiveness to adrenaline compared to males (p < 0.05, n=30 per group). Additional tests are underway to determine if menopausal status will alter or influence LV function before or after stress challenges. Development of these models is expected to facilitate evaluation of the underlying biological basis for the observed sex-based differences in the occurrence of Tako-Tsubo and related stress-induced cardiomyopathies in the clinic.

POSTER ID: 808
Sex differences in vitamin D binding protein are associated with increased myocarditis in men and male mice

Abstract Presenter: Erika J. Douglass, M.P.H.¹
Other Authors: Michael J. Coronado, Ph.D.² Adriana Bucek³, Douglas W. Mahoney³, Jo D. Carryer³, Leslie T. Cooper Jr³, and DeLisa Fairweather²,⁴
Author Affiliations: ¹Association of Schools of Public Health / Environmental Protection Agency, Washington, D.C.; ²Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD; ³Mayo Clinic College of Medicine, Department of Vascular Biology, Mayo Clinic, Rochester, MN 55905; ⁴Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
Vitamin D (VitD) deficiency has been hypothesized to exacerbate many inflammatory-based diseases including autoimmune disease, cancer, and heart disease. Vitamin D binding protein (DBP) is the primary transporter of VitD and its metabolites in the sera. DBP may increase autoimmune inflammation via its known macrophage activating functions. Macrophages are the primary infiltrate in the autoimmune heart disease, myocarditis. Like other cardiovascular diseases, the incidence of myocarditis is higher in men. In this study, we examined whether sex differences exist in DBP levels in myocarditis patients and in a coxsackievirus B3 (CVB3)-induced model of myocarditis in BALB/c mice. We found that men with myocarditis had significantly higher levels of DBP in the sera (p = 0.03). We verified that DBP mRNA was significantly increased in the heart of male mice with myocarditis, but not in female mice (p = 0.04). Male mice also had significantly increased cardiac mRNA levels of Cyp2R1 (p = 0.03), which is one of the enzymes that converts VitD to its active form resulting in release of DBP. Our results suggest that DBP is protective in females, but not males. Gonadectomy and hormone replacement experiments showed that testosterone is responsible for these DBP increases in the heart (p = 0.03). Our findings suggest that testosterone increases Cyp2R1 (p = 0.03), influences DBP expression (p = 0.03) and may be responsible for the higher incidence of myocarditis in males. To our knowledge, we are the first to report a sex difference in DBP levels in the sera of myocarditis patients. This work was supported by National Institutes of Health Grants HL087033.

POSTER ID: 809

Sex differences in the effect of vitamin D on inflammatory heart disease: protective in women but damaging in men

Abstract Presenter: Katelyn A. Stafford

Other Authors: Leslie T. Cooper, Erika J. Douglass, Jessica E. Brandt, Adriana Bucek, Michael J. Coronado, Richard R. Kew, DeLisa Fairweather

Author Affiliations: ‘Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland, 2Department of Medicine, Mayo Clinic, Rochester, Minnesota, 3Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York, United States

An estimated 1 billion people worldwide have deficient or insufficient levels of vitamin D (VitD), while roughly 25% of individuals in the US are reported to have inadequate VitD levels. Considerable evidence indicates that VitD deficiency is associated with an increased risk of cardiovascular disease (CVD), yet it remains unclear whether low VitD is simply a biomarker of CVD or has a true pathologic role. Myocarditis, an inflammatory heart disease, appears as lymphocytic myocarditis (LM) or giant cell myocarditis (GCM), yet the role of VitD deficiency in the pathogenesis of disease is unknown. We found that 75% of GCM patients had deficient or inadequate levels of VitD (<19ng/mL) whereas only 20% of LM patients had low levels. Following therapy, VitD levels in women but not men with GCM significantly improved (p=0.04). Myocarditis patients are at risk of heart failure, which is reflected by a low ejection fraction (EF). In GCM patients, low EF correlated with low VitD levels in both men and women (r² = 0.42). In contrast, poor EF and low VitD was only correlated in women with LM (r²=0.54), but surprisingly men had an opposite correlation- high VitD correlated with low EF (r²=0.81). When we examined the role of VitD using VitD receptor (VDR) deficient mice in a model of LM, we found that VDR decreased myocarditis in females (p=0007) but increased inflammation in males (p=0.006). Comparison of microarray data during myocarditis in mice to known VitD response element genes revealed that genes associated with proinflammatory (e.g. caspase-1, p=7.0x10⁻⁵) and profibrotic (e.g. TGF-β, p=8.6x10⁻⁶) immune responses were significantly upregulated in the heart of males, providing a mechanism to explain how VDR increases disease in males. These findings in the mouse model confirm that sex differences exist in the function of VitD/VDR in men and women with LM. A large portion of the population is now taking all sorts of vitamin and mineral supplements including ones for VitD. The role of VitD/VDR has not been extensively investigated based on sex for myocarditis, but it is known that VitD plays a role in many important diseases such as CVD and autoimmune disease such as multiple sclerosis that effect people every day. Therefore, studying the mechanism and effect of VitD is important to a huge number of men and women.

POSTER ID: 810

Relationship between gender and cardiotoxicity from doxorubicin in spontaneously hypertensive rats

Abstract Presenter: Yanira Gonzalez-Berrios, Ph.D.

Other Authors: Leena M. Chehab, Elliot T. Rosen, Jennifer S. Dickey, Ph.D., Eugene Herman, Ph.D., and V. Ashutosh Rao, Ph. D.

Author Affiliations: Center for Drug Evaluation and Research, Food and Drug Administration
Treatment of cancer with anthracyclines such as doxorubicin (Dox) causes dose-limiting cardiotoxicity, particularly in younger females. Dox metabolites generate excess reactive oxygen species (ROS) using an iron-mediated mechanism in mitochondria of cardiac cells. Since cardiomyocytes have lower levels of antioxidant defense, the cardiac cells are sensitive to ROS; however the exact reason for the gender differences in toxicity is unclear. Currently, an iron chelator, dexrazoxane (Dzr), is used in the clinic to alleviate some of the cardiotoxicity. The aim of our study is to understand gender effects in cardiotoxicity using a recently-optimized, physiologically-relevant animal model. We used female, male, ovariectomized female, and castrated male adult spontaneously hypertensive rats (SHR). The SHR were implanted with syngeneic breast cancer cell line derived from a spontaneous breast tumor in SHR. After cell implantation, each group of age-matched animals were exposed to either saline, acute high-dose doxorubicin, dexrazoxane, erythropoietin (Epo), or combinations with doxorubicin. Estrogen and testosterone levels were measured to confirm decreased in hormones levels in ovariectomized or castrated rats. Tumor size was used as the marker of anticancer activity. Dox, in combination with either dex or epi showed significant reduction in tumor size after 14 days in each animal group. However, weight loss was more significant in males and castrated males treated with Dox than in females or ovariectomized females. In addition, cardiac troponin T levels were used to assess cardiotoxicity and were higher in males treated with Dox than females, castrate males or ovariectomized females, also treated with Dox. We are currently testing possible links between gender-selective toxicity and oxidant-induced autophagy.

POSTER ID: 811
Potentially proarrhythmic electrical remodeling in the pregnant heart

Abstract Presenter: Glenna CL Bett
Other Authors: Sarah D Crimmins D.O., Qinlian Zhou Ph.D.
Author Affiliations: 1Center for Cellular and Systems Electrophysiology, Departments of Gynecology-Obstetrics, Biomedical Engineering, Physiology and Biophysics, SUNY, University at Buffalo, Buffalo, NY, USA

Although sex differences have been clearly identified in the cardiac EKG for more than a century, the molecular bases of these differences are well not described. Even less well understood is the molecular basis of the adaptation of the female heart to the physiological remodeling associated with pregnancy. We therefore quantified differences in expression level of mRNA of cardiac ion channels between ovariectomized, non-pregnant, and pregnant hearts.

Left ventricular free wall was excised from OVX, non-pregnant (n=18), pregnant (n=6) ovariectomized (n = 8) and mice (C57BL). mRNA was extracted (Trizol, Invitrogen and RNAeasy, Qiagen) and converted to cDNA (First strand synthesis, SABioscences). We used quantitative real time PCR (SYBR Green in an iQ cycler, Biorad) to determine changes in relative mRNA expression in the mouse left ventricle. Data were analyzed using ANOVA (p<0.01 was regarded as significant). The quantified changes in mRNA expression were used to scale current magnitude in a computer model of the mouse cardiac action potential.

Expression of several channels was significantly changed in pregnancy: SCN5A (INa) showed a 1.51 fold increase, p=0.008); KCN2 and KCN3 (components of Ito) were reduced 0.48 and 0.35 fold respectively, (p<0.0001); the delayed rectifier currents KCN2 (IKr) and KCNQ1 (IKs) both showed decreased expression (0.26 (p=0.001) and 0.59 fold (p=0.004) respectively); the sarcoplasmic reticulum uptake pump showed an 0.58 fold decrease (P=0.005). Computer simulations were in close agreement with published data. Some of the observed changes in pregnancy (e.g., reduction in the relative expression of repolarizing currents) were potentially pro-arrhythmic.

Our results demonstrate that changes in mRNA expression of sodium and potassium channels during pregnancy are predicted to prolong the cardiac AP and are therefore potentially pro-arrhythmic in a normal heart. However, the pregnant heart has to adapt to a major change in pump load, so these changes may reflect an adaptation to the altered physiology of pregnancy.

POSTER ID: 812
Maternal vascular function in early pregnancy in relation to fetal gender

Abstract Presenter: Charlotte Iacobaeus, M.D., Ph.D.-student
Other Authors: Gun Lönskoski, M.D.,Ph.D.; Thomas Kahan, M.D., Ph.D., Prof.; Malin Thorsell, Ph.D.; Elika Andolf, M.D., Ph.D., Prof.
Author Affiliations: Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden; 2Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Sweden
Background: Fetal gender is independently associated with adverse pregnancy outcome. There is an increased risk for spontaneous abortions, preterm labour and preterm premature rupture of membranes in pregnancies with male fetuses. Women carrying male fetuses are at increased risk for hypertensive disorders during pregnancy, which is a marker for cardiovascular disease later in life, possibly due to a persistent endothelial dysfunction.

Objective: To assess if fetal gender relates to cardiovascular function in women during pregnancy and after delivery.

Materials and Methods: 50 healthy women with singleton viable pregnancies were studied at gestational week 12-14. Supine brachial blood pressure (BP) was measured by a standard oscillometric device. Pulse wave analysis by applanation tonometry was used to calculate central blood pressure and arterial stiffness. Forearm flow mediated dilation (FMD) following ischemia and glyceryl trinitrate (peak FMD 1.67±0.37 vs 2.17±0.48 AU, p <0.001), and maximum microvascular hyperaemia (MMH) to local heating were used to assess microvascular function.

Results: At gestational week 12-14, women with a male fetus showed lower microvascular vasodilatation in response to SNP (peak SNP 1.67±0.37 vs 2.17±0.48 AU, p <0.001), and a trend of reduced microvascular response to Ach (peak Ach 1.83±0.35 vs 2.10±0.49 AU, p =0.07), and MMH (peak MMH 118±33 vs 142±45 AU, p =0.065). There were no differences between the groups in brachial BP (106±7/62±6 vs 107±8/61±7 mm Hg central BP (89±7/62±5 vs 92±7/63±6 mm Hg), changes in FMD following ischemia (+10.0±3.9 vs +10.2±3.6 % and glyceryl trinitrate (+25.6±4.6 vs +26.1±5.9 %) for male and female gender, respectively. Pulse wave velocity was 5.3 ±0.5 vs 5.6±0.6 m/s p=0.11. Body mass index and age was comparable between the groups.

Conclusion: The results suggest that alterations in maternal skin microvascular function at gestational week 12-14 are related to fetal gender. Women with a male fetus have a lower endothelial-independent vasodilatation. Further analyses at gestational weeks 24 and 34, and at nine month after delivery are in progress and might reveal further differences in cardiovascular function, related to fetal gender.
Sex matters! Influence of sex and etiology on Endostatin serum levels in patients with chronic heart failure (CHF)

Abstract Presenter: M. Sponder
Other Authors: R. Pacher, M. Hülsmann, M. Gwechenberger, J. Knoth, S. Kampf, M. Fritzer-Szekeres, B. Litschauer, J. Strametz-Juranek

Author Affiliations: 1 Medical University of Vienna, Institute of Internal Medicine II, Department of Cardiology, 1 Medical University of Vienna, Clinical Institute of Medical and Chemical Diagnostics, 3 Medical University of Vienna, Department of Clinical Pharmacology

Background: Endostatin, a potent angiostatic factor, inhibits endothelial cell proliferation and migration and stimulates endothelial nitric oxide synthase (e-NOS). Chronic heart failure (CHF) is a vasococontractive state associated with a significant upregulation of neurohumeral factors such as brain-natriuretic peptide (BNP), predicting morbidity and mortality in CHF patients. Therefore, the aim of the present study was to investigate the impact of sex, etiology and functional heart class in CHF on serum endostatin levels.

Material and Methods: Endostatin levels were measured (ng/ml) at rest in 75 individuals, divided into 2 groups: 30 CHF-patients (17 di-latative, 13 ischemic; 9 NYHA I, 9 NYHA II, 12 NYHA III) and a control group consisting of 45 “elderly” non smokers (female vs. male). In the CHF group also BNP was measured.

Results: In contrast to the control group, which showed no gender specific difference in mean endostatin levels (female: 112,33±23,59; male: 116,55±16,65), male CHF-patients (263,00±115,39) had much higher endostatin levels compared to female CHF-patients (191,36±52,94). Endostatin levels in dCHF were 192,25+/-44,85 compared to iCHF 260,69+/-116,02. Endostatin also showed a positive correlation to BNP-levels in the CHF group (p<0,003).

Conclusion: 1) CHF is associated with upregulation of endostatin levels, especially in female patients. 2) CHF based on ischemic heart disease is associated with higher Endo serum levels compared to DCHF. 3) Furthermore, Endostatin serum levels correlate to BNP levels in CHF patients. Further studies are warranted, to investigate the impact of Endo as prognostic marker in CHF patients.
prescriptions was higher in men. When looking at individual data the bleeding risk is higher for women (OR 1,43) but when adjusting for the number of prescriptions the bleeding risk is lower for women (OR 0,87). For warfarin (individualized dosing) no gender difference in bleeding events could be found when adjusting for individual data (OR 1,01) but women have a higher risk of bleeding events when adjusting for the number of prescriptions (OR 1,20). The ORs for serious bleeding events are in line with the above mentioned for each drug.

For low-dose aspirin a lower risk of bleeding events was seen in women compared to men and an important factor for this could be lower dosing in women. There was a signal towards an increased risk of bleeding in woman compared to men on clopidogrel treatment. For warfarin, no gender difference was seen regarding adverse bleeding events and it is suggested that individualized dosing is an important factor for this.

POSTER ID: 816

Ethnic and sex differences in cytokine profile systemic lupus erythematosus

Abstract Presenter: Beverly D. Lyn-Cook, Ph.D.

Other Authors: Edward Treadwell, Kenneth Wiley, Beverly Word, Ralph Patton and George J. Hammons

Author Affiliations: 1FDA-National Center for Toxicological Research, Jefferson, AR, 2East Carolina University School of Medicine, Greenville, N.C

Introduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease involving multiple organ systems and is often detected in women in their reproductive years at a ratio of 9:1 compared to men. African American women (AAW) have five times the incidence compared to Caucasian women (CW). Selected cytokines, most specifically interferons (INFs), have demonstrated increased expression in SLE and peripheral blood mononuclear cells from lupus patients. The objective of this study was to determine the relationship of INFs and related cytokines to African American and Caucasian women with and without lupus. Although the sample size is small, a sex difference was noted in several cytokine levels and expression. These findings could lead to more specific targets in treating this potential life threatening disease, especially in AAW.

Methods: Blood samples were consecutively obtained by informed consent from 270 patients; 137 lupus and 133 none lupus (N-lupus) consecutively seen in the rheumatology clinics at East Carolina University and analyzed using enzyme linked immunoassay (ELISA) for INF-gamma, tumor necrosis factor-alpha (TNF-α), IL-6, IL-10, and IL-6/actin expression. IL-6 expression was also analyzed by real time polymerase chain reaction.

Results: Average levels (pg/mL) of select cytokines showed significant differences. Significant differences were determined by p-value (nonparametric two tail t-test using Graph Pad Prism version 4 software) for female subjects. Lupus patients showed significant higher levels for all cytokines than in Non-Lupus with p-values for INF-gamma, TNF-α, IL-6, IL-10, and IL-6/actin of 0.0118, 0.0034, 0.0001, 0.0033, and 0.0001, respectively. AAW showed higher levels than CW in IL-6/actin expression (p=0.0010). AAW had a higher level of expression of IL-6 and IL-10 than white males; however, there was no significant different between AAW and AAM in those selected cytokines (p<0.095).

Conclusion: AAW demonstrated a high level of expression for numerous cytokines than N-lupus and CW subjects. These studies should provide targets for treating SLE and further understanding the varied biological and genetic mechanisms of SLE.

POSTER ID: 817

p38 MAP kinase signaling in myeloid cells controls autoimmune disease of the CNS in a sex-specific manner

Abstract Presenter: Dimitry N. Krementsov, Ph.D.

Other Authors: Rajkumar Nobade, Ph.D.1,2, Kinya Otsu, Ph.D.3, Mercedes Rincon, Ph.D.1, Cory Teuscher, Ph.D.1

Author Affiliations: 1Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT, USA, 2Genentech, Inc. So. San Francisco, CA, USA, 3Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Yamadaoka, Suita Osaka, Japan

Sexual dimorphisms in severity and incidence of autoimmune diseases such as multiple sclerosis (MS) and lupus, are well established, but poorly understood. In fact, over the past 50 years MS incidence has increased dramatically in women. Sex-specific (especially female-specific) disease modifying therapies (DMTs) are clearly warranted, but the mechanistic insight for their design is lacking.
p38 MAP kinase (MAPK) is a key regulator of inflammatory responses in various autoimmune conditions, but its role in MS or MS models remains relatively unexplored. Using an animal model of MS, experimental autoimmune encephalomyelitis (EAE), we have previously shown that pharmacological inhibition of p38 MAPK activity prevents disease in C57BL/6 mice. We also showed that genetic manipulation of p38 MAPK activity in T cells is sufficient to alter disease in a different mouse strain, B10.BR.

We now show that pharmacological inhibition of p38 MAPK only prevented EAE in female, but not male C57BL/6 mice. However, genetic manipulation of p38 activity in T cells in B10.BR mice affected disease in both males and females, suggesting either a strain-specific or a cell type-specific sexual dimorphism. To address these possibilities, we generated C57BL/6 mice lacking p38alpha MAPK in T cells or myeloid cells/macrophages; since both cell types contribute to EAE and MS pathogenesis, and p38alpha signaling in these cells typically plays a pro-inflammatory role. Unexpectedly, T cell-specific deletion of p38alpha in C57BL/6 mice had no significant effect on EAE in either sex. In contrast, deletion of p38alpha in myeloid cells resulted in protection in females, but not males, suggesting that the sexual dimorphism in the EAE response to pharmacological blockade of p38 occurs within the myeloid cell compartment. Analysis of the inflammatory infiltrates in the CNS revealed that female, but not male mice lacking p38 in myeloid cells exhibited reduced immune cell activation compared with controls.

Taken together, our results suggest that p38 MAPK activity in T cells or myeloid cells can control severity of autoimmune disease of the CNS, however the extent of the involvement of either cell type is tightly controlled by genetic factors and sex. These findings reveal important mechanisms underlying sex differences in autoimmune disease, and suggest that the p38 MAPK pathway may present targets for female-specific DMTs for MS.

POSTER ID: 818

The potential male-specific oncogenic function of Cdca7l in astrocytoma

Abstract Presenter: Min-Hyung Lee, Ph.D.
Other Authors: Jessica Amlin-Van Schack, Ph.D. 1, Karl Broman, Ph.D. 2, and Karlyne Reilly, Ph.D. 1
Author Affiliations: 1Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, 2Department of Biostatics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI

The most common types of primary central nervous system (CNS) tumors, astrocytoma and glioblastoma multiforme (GBM), are currently incurable. Both astrocytoma and GBM show male predominance in the population, with a male to female ratio of 1.31:1 for astrocytoma and 1.26:1 for GBM (Kleihues et al., 2000). Previously, our lab has demonstrated that astrocytoma/GBM tumorigenesis in the Nf1-/-;Trp53-/-;cis (NPCis) mouse model shows gender bias in certain genetic context (Reilly et al, 2009, Walrath et al, 2009).

Using the linkage analysis in the NPCis mouse, we have recently identified a male-specific genetic modifier on distal chromosome 12 (Chr 12), named Arlm1 for Astrocytoma resistance locus in males 1 (Amlin-Van Schack et al, 2012). Arlm1 is syntenic to human Chr 7p15, 7p21, 7q36, and 14q32 regions that are frequently altered in human GBM. Furthermore, combinational bioinformatics approaches and cross-species comparisons have identified Cell division cycle-associated 7-like (Cdca7l) as a strong candidate for a male-specific susceptibility gene for astrocytoma among 503 candidate genes within this Arlm1 locus. To investigate the role of Cdca7l in astrocytoma/GBM, we analyzed the expression of Cdca7l in both human and mouse astrocytoma cell lines in both genders. Our data showed that Cdca7l was up-regulated in astrocytoma cells compared to normal brain expression with male-predominant expression. Furthermore, shRNA-mediated silencing of Cdca7l in male-derived mouse astrocytoma cells led to the decreased cell growth as well as reduced cell viability suggesting the oncogenic role of Cdca7l in astrocytoma/GBM. Future analyses in both male- and female-derived astrocytoma cells will address whether the oncogenic function of Cdca7l is indeed male-specific or male-prevalent in astrocytoma/GBM.
Introduction: Changes in practice and screening in the US resulted in large increases in the incidence of clinically diagnosed female breast cancer in the late 20th century. The objective of this study is to determine the extent to which this was matched by changes in breast cancer mortality for premenopausal, perimenopausal and postmenopausal women in different birth cohorts.

Methods: SEER female breast cancer data (1973-1984 and 1995-2006, comprising 88029 records) by stage at diagnosis (in-situ [IS], local [invasive, localized to the breast], regional extension [local nodes or surrounding tissues], distant metastatic) were analyzed by 5-year birth cohort, and national vital statistics female breast-cancer specific data (1981-1984 and 1995-2000, comprising 326752 deaths) were analyzed by annual birth cohort. The 1985-1994 decade was excluded because rates were in flux, though they were stable in the epoch prior and after (Anderson et al. 2007). Incidence and mortality rates for the epoch before 1985-1994 were compared to the epoch after this decade using mixed model Poisson regression with birth cohort as random effect. As breast cancer is hormonally driven, models allowed for different relationships for age<45, 45-55 and >55 years, corresponding to premenopausal, perimenopausal and postmenopausal periods. Mortality rates for age<30 years were excluded. All rates are shown per 100,000 per year.

Results: Between epochs, for premenopausal-age women, the overall rate of breast cancer diagnoses increased from 2.4 to 4.0 with significant increase in the incidence of IS (4.51-fold, p<0.001), local invasive cancer (1.75-fold, p<0.001) and distant metastases (1.50-fold, p<0.001) but not regional extension (0.99-fold, p=0.862). For perimenopausal-age women, the overall rate increased from 18.1 to 28.1 with significant increase in the incidence of IS (4.33-fold, p<0.001) and local invasive cancer (1.74-fold, p=0.001) but a decrease in regional extension (0.83-fold, p<0.001) and no change in distant metastases (1.04-fold, p=0.48). For postmenopausal-age women, the overall rate increased from 26.0 to 44.2 with significant increase in the incidence of f IS (4.57-fold, p<0.001) and local invasive cancer (1.95-fold, p<0.001) but a decrease in regional extension (0.82-fold, p<0.001) and no change in distant metastases (1.02-fold, p=0.58). Breast cancer mortality did not change significantly between the two epochs for premenopausal ages (0.93-fold, p=0.33, from 14.3 to 11.7), but reduced significantly for perimenopausal women (0.79-fold, p<0.001, from 50.0 to 38.8) and postmenopausal women (0.96-fold, p<0.001, from 104.7 to 102.0)

Conclusions: An increased incidence of diagnoses of early stage breast cancer was associated with a concomitant decrease in breast cancer mortality, especially among perimenopausal and postmenopausal women. Though the changes in incidence have similar magnitude for perimenopausal and postmenopausal ages, the relative and absolute mortality reduction was greatest for peri menopausal ages. Because analysis is by birth cohort and age, mortality gains show that the improvement is not merely due to detection of disease at the subclinical stage. Further research into SEER follow-up data may be able to disentangle the benefits of early screening versus new treatment modalities between the two epochs, and cohort differences in the use of oral contraceptives and hormone replacement therapy.

External ID: 820

Drug treatment in patients with newly diagnosed unprovoked seizures and epilepsy: gender differences

Abstract Presenter: Linnéa Karlsson, Pharm.D
Other Authors: Björn Wettermark, M.Sc.Pham, Torbjörn Tomson, M.D.

Author Affiliations: 1Centre for Pharmacoepidemiology, Karolinska Institutet, and Analysis Department, Public Health Care Services Committee Administration, Stockholm County Council, 2Department of Clinical Neuroscience, Karolinska Institutet

Introduction: Epilepsy is the most common chronic neurological disorder. Antiepileptic drugs (AEDs) is the mainstay treatment generally initiated in patients after more than one unprovoked seizure. Monotherapy is preferred, but some patients need a multiple AED regimen. Epilepsy is often associated with comorbidities and coadministration of other drugs. Since many AEDs are prone to drug-drug-interactions, patients with epilepsy are at risk to experience such.

Aim: To study the drug treatment in patients with newly diagnosed unprovoked seizures/epilepsy in a population-based cohort in Stockholm County Council.

Materials and methods: Clinical data from the Stockholm Incidence Registry of Epilepsy was cross-linked with drug dispensing data from the Swedish Prescribed Drug Register in order to analyze drug treatment in patients with newly diagnosed unprovoked seizures between 2006 and 2008.
Conclusions: A high proportion of patients received treatment within one year and the choice of first AED were consistent to current treatment guidelines. Many patients used other medications and several of them are related to known comorbidities. No gender differences were seen in the proportion of patients prescribed first AED within one year, nor in the proportion of patients initiated on monotherapy. Valproate was predominately prescribed to male patients and lamotrigine was predominately prescribed to female patients. Drug-drug interactions between the first AED and other prescribed medications were not very common, which indicates that prescribers are well aware of the risk for interactions.

POSTER ID: 821
Gene expression profiling of rat kidney reveals sex- and age-related differences that may underlie adverse drug reactions and disease

Abstract Presenter: James C. Fuscoe, Ph.D.1
Other Author: Varsha G. Desai, Ph.D.1, Tao Han, Ph.D.1, Vikrant Vijay, Ph.D1, William S. Branham, M.S.1, Carrie L. Moland1, and Joshua C. Kwekel, Ph.D.1
Author Affiliations: 1Division of Systems Biology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR

Understanding age- and sex-related susceptibility to adverse drug reactions (ADRs) and diseases is key to protecting public health. The kidney plays a central and complex role in maintaining total body homeostasis, with key functions in excretion of metabolic wastes, blood electrolyte composition, acid-base balance, and hormone synthesis and regulation. In addition, the kidney is involved in the pharmacokinetics and excretion of pharmaceutical drugs via xenobiotic metabolism enzymes and molecular transporters. Developmental and adult aging effects influence predisposition for susceptibility to some ADRs. Studies of renal disease and acute kidney injury (following ischemia-reperfusion injury) suggest sexually dimorphic susceptibilities as well. Thus, we hypothesize that the basal expression levels of genes in the kidney throughout the rat life cycle in both sexes will inform our assessments of ADRs and disease. Untreated male and female F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age, and kidneys were collected for gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. A 2-way ANOVA (p < 0.01) along with >1.5 fold change (from the mean expression level of all ages and sexes) was used to identify 4,061 unique genes that were differentially expressed by sex or age. Principal component analyses revealed notable expression profile differences between age groups with greatest distinction observed between 2 and 5 wks of age. The expression levels of 332 genes were found to differ between the sexes in adult animals of 8 - 21 weeks of age, including Slco1a1 (Oatp1), Slc22a7 (Oat2), Abcb1b (Mdr1), and Abcc8. Pathway analysis of the 332 sexually dimorphic genes revealed gene networks related to xenobiotic and lipid metabolism; molecular transport; and renal tubular injury. Analysis of gene expression in the kidneys of 78 and 104 week old rats, revealed potential sex differences in immune function, and included the genes Cd4, Lat, Lck and Tcrb, which exhibited male-dominance. Furthermore, the gene encoding KIM-1 (an FDA/EMA qualified renal biomarker) showed significant sex (16-fold) and age (140-fold) related differences in expression. These results identify genes that may underlie age- and sex-specific susceptibilities to ADRs or disease states. Understanding these differences should improve personalized medicine both in terms of disease prevention, management, and safer use of drugs. This study was supported by a grant from the FDA Office of Women’s Health.

POSTER ID: 822
Natural variation in the murine Y chromosome influences gene regulation and susceptibility to autoimmune disease

Presenting Author: Laure K. Case, Ph.D.1
Sex-specific differences affect many aspects of immune system physiology and although these differences may arise from multiple mechanisms, including differential effects of sex hormones, there is increasing evidence that genetic differences in the Y chromosome can influence immune-mediated diseases. Using a panel of C57BL/6J Y chromosome (B6-ChrY) consomic strains, in which B6 mice inherit the Y chromosome from diverse substrains of mice, we show that natural genetic variation in the mouse Y chromosome directly impacts susceptibility to two sexually dimorphic autoimmune diseases, including coxsackievirus B3-induced myocarditis and experimental allergic encephalomyelitis (EAE), the animal model of multiple sclerosis. The relatively limited genetic diversity in genes encoded on the Y chromosome between substrains of mice suggests that protein-coding genes may not underlie these observed phenotypes. Importantly, recent studies in Drosophila show that natural polymorphic variation in tracts of Y chromosome heterochromatin can influence the epigenetic regulation of autosomal and X chromosome gene expression through its interaction with euchromatin, thereby epigenetically regulating phenotypic differences in males. Therefore, we hypothesized that the Y chromosome-regulated differences in disease susceptibility among B6-ChrY consomic strains is the result of an evolutionarily conserved role for the regulation of autosomal and X chromosome gene expression by the Y chromosome. To test this, we examined gene expression differences using Affymetrix Mouse Gene 1.0 ST arrays in naïve CD4 T cells from wild-type B6 and B6 mice with an SJL Y chromosome (B6-ChrYSJL), which is the consomic strain combination that exhibits the most dramatic difference in disease susceptibility. Our gene expression analysis using a binary filter (P<0.05 and 2X fold change) revealed that natural variation in the Y chromosome results in over 600 genes that are differentially expressed in CD4 T cells. An analysis of these genes using Ingenuity Pathway Analysis identified the top biological functions to be post-transcriptional modifications, including processing and splicing of mRNA. In conformation of this, we discovered over 1700 alternative splice variants that pass a false discovery rate of 0.01, the majority of which are present in B6-ChrYSJL but absent in wild-type B6 cells. We further hypothesized that the Y chromosome may regulate the microRNA transcriptome in CD4 T cells and are currently waiting to receive these data on the complementary Affymetrix microRNA 2.0 arrays. In summary, we have identified an evolutionarily conserved role for the regulation of autosomal and X chromosome gene expression and immune system regulation by the Y chromosome. Future experiments will focus on defining the genetic and molecular basis of gene regulation by the Y chromosome and how this influences susceptibility to autoimmune diseases in males.

POSTER ID: 823

Genetic models of sex differences in mice: beyond hormones

Abstract Presenter: Sergei G. Tevosian, Ph.D.1
Other Authors: Ramji Bhandari1, Deborah Morse1, and Shawna C. Fox1
Author Affiliations: 1Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL

It has been established that numerous pathological conditions in humans are profoundly affected by patient’s sex/gender. It is normally presumed that sex is a genetically determined defined binary state (male or female) that has endocrine influence over a pathological condition. However the interaction between sex and the disease could be more complex. While it is possible that in some cases there is no direct genetic connection between the sex of an individual and the pathological condition, notable exceptions do exist. The systematic investigation of the genetic links between the sex of an individual and particular disease is quite difficult in humans who (with notable, but rare exceptions) do not present opportunities for robust linkage analysis. On the contrary, numerous mouse models of sex differences are available for analysis and directed genetic crosses, but insight with respect to the influence of sexual state in these animals on pathological conditions has been insufficient. Transcription factors of the GATA family as well as canonical Wnt pathway play important roles in sex determination and gonadal development; however, proteins involved in these pathways are also prominent in directing the development of various other tissue types. We propose to use animals with mutations in these pathways as representative models for genetic conditions where a mutation has a dual effect: on sex determination and subsequent gonadal development, but also in other organ systems. We believe these models could be useful in understanding
similar relationships between the sexual state and disease in humans. Supported by grant from the NIH HD042751.

POSTER ID: 824
Genetic sex may not always correlate with gonadal sex in 46, XX Congenital Adrenal Hyperplasia patients

Abstract Presenter: Eunice Marumudi, Ph.D.1
Other Authors: A. Sharma2, R. Khadgawat1, B. Kulshreshtha1, M.L. Khurana1, A.C. Ammini1

Author Affiliations: 1Department of Endocrinology & Metabolism, 2Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India

Introduction: Congenital Adrenal Hyperplasia (CAH) is one of the most common autosomal recessively inherited inborn errors of metabolic disorder characterized by loss of activity of steroid 21-hydroxylase (21-OHD) enzyme. In these patients, cortisol production is impaired and 17-OH-progesterone (17 OHP) levels increased. Because of the increased production of androgens, masculinisation occurs in genetically female foetuses. Molecular defects in the CYP21A2 gene are responsible for manifestation of this disease.

Objective: In the present study we analyzed the genotype of CAH patients who referred to endocrine clinic at AIIMS hospital New Delhi. These patients were subjected to genotype analysis to find out the underlying mutations in the CYP21A2 gene and to correlate with phenotype.

Methods: Detailed history was taken including the prader staging, genital appearance, and sex of rearing and hirsutism status.

Hormonal Assays: Electrochemiluminescence method was used for estimating the levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), Dehydroepiandrosterone sulphate (DHEAS), Cortisol Adrenocorticotropic hormone (ACTH) and testosterone (T). Radioimmunoassay (RIA) kit based method was used for estimating the 17 OHP levels. (Diagnostic systems laboratories, Inc., Webster, TX, USA) supplied by Immuneotech Marcelle, France).

Cytogenetic analysis: Conventional cytogenetic analysis was carried out on peripheral blood using standard techniques. Karyotyping was carried out on G-banded metaphases obtained from 72-h cultures.

Molecular Analysis: Informed consent to carry out molecular genetic studies was obtained from these patients/parents. DNA was isolated from blood samples of CAH patients by using the Qiagen DNA isolation kit as per the manufacturer’s instructions. DNA was quantified and subjected to PCR amplification using specific primers to amplify the CYP21A2 gene (Oriola, 1997).

Results: All these five 46, XX CAH patients were reared as males due to the appearance of their external ambiguous genitalia. Their age at presentation varied from infancy to 34 years. Except one patient, all are from non-consanguineous marriages. USG revealed the presence of uterus and normal bilateral ovaries in these patients. The mean hormone levels were -T: 1.66 ng/ml; 17 OHP: 69.76 ng/ml; Cortisol: 10.92 µg/dl respectively. Two were found to have salt wasting (SW) type and three were found to have simple virilising (SV) type of CAH. Molecular analysis revealed that in SW type, the most severe mutations, I2 and R356W were found when compared to less severe variety of CAH (SV). P30L mutation was observed only in SV type. It is interesting note that one SV patient had ambiguous genitalia, infertility and adrenal adenoma. He was also compound heterozygote for four mutations.

Conclusion: A child born with a disorder of sexual differentiation (DSD) poses a variety of challenges for the treating physician as well as for the parents and family. Hence it is important to provide the molecular diagnosis to parents along with other family members and to assign the most appropriate gender according to the patients’/parents wish and the severity of virilisation. This multi-level approach will be useful for risk assessment as well as to offer genetic counseling.

Acknowledgement: This study is being supported by Department of Biotechnology (Ref.N0.BT/PR7205/Med/12/277/06), Government of India.
POSTER ID: 825

Rhox gene expression in female embryonic stem cells and in ovary is regulated by KDM6A, a histone demethylase encoded by a gene that escapes X inactivation with higher female versus male expression

Abstract Presenter: Christine M. Disteché

Other Authors: Joel B. Berletch, Xinxiang Deng, and Di Kim Nguyen

Author Affiliations: Departments of Pathology and Medicine, University of Washington, Seattle, WA

The *Rhox* genes represent a type of developmentally regulated homeobox (HOX) genes implicated either in male or female reproduction. Within the *Rhox* cluster on the mouse X chromosome *Rhox6* and 9 are expressed higher in ovary compared to testis. KDM6A, a histone demethylase that removes the repressive chromatin mark trimethylation at lysine 27 of histone H3 (H3K27me3), is encoded by a gene that escapes X inactivation, resulting in higher female than male expression levels. Here we report that KDM6A regulates *Rhox6* and 9 expression during early female but not male ES cell differentiation. KDM6A is recruited to *Rhox6* and 9 in female ES cells resulting in removal of H3K27me3 and increased *Rhox* expression, a process inhibited by KDM6A knockdown. In contrast, KDM6A occupancy at *Rhox6* and 9 is low in male ES cells and knockdown has no effect on expression. In adult ovary where *Rhox6* and 9 are highly expressed KDM6A occupancy strongly correlates with expression. Our study implicates for the first time a gene that escapes X inactivation and thus has higher expression in females in the regulation of homeobox genes specifically during early female embryonic stem cell development and in ovary.

POSTER ID: 827

Identification of the miR-200 family, a potential mediator of the neurodevelopmental effects of early prenatal stress

Abstract Presenter: Christopher P. Morgan

Other Authors: Tracy L. Bale

Author Affiliations: Department of Animal Biology, University of Pennsylvania

Prenatal stress exposure is associated with an increased risk of neurodevelopmental disorders, associations that are often sex-dependent. These diseases often display sex differences in prevalence, presentation, or therapeutic outcomes. While many factors contribute to these differences, sex-specific responses to fetal antecedents are likely involved. We have identified a sensitive period of early gestation when stress has sex-specific programming effects on neurodevelopment. Adult prenatally stressed males show increased stress sensitivity in behavioral and physiological measures. Interestingly, the result of this effect is a reduction in the well-established sex differences in these outcomes. Fitting with this phenotype, these males also appear dysmasculinized, with reduced...
testosterone levels, smaller testes, and shorter anogenital distances suggestive of a disruption in normal perinatal masculinization. In an effort to understand the role of miRNAs in mediating the effects of prenatal stress on neurodevelopment we have examined the response of the neonatal brain miRNA environment to both organizational steroids and disruptors of masculinization. Meta analysis of these data has led us to a family of miRNAs, the miR-200 family that is consistently correlated to masculinization. Argonaute HITS-CLIP is allowing us to identify the network of genes regulated by the miR-200 family, furthering our understanding of the sexual differentiation of neural stress pathways, and potentially leading to novel therapeutic targets or biomarkers predictive of neurodevelopmental disease.

POSTER ID: 828

Sexual differences in the effects of adolescent stress on adult brain inflammatory responses

Abstract Presenter: Gretchen N. Neigh

Other Authors: Leah M. Pyter, Sean Kelly, Constance Harrell

Author Affiliations: 1Departments of Physiology and Psychiatry, Emory University; 2Center for Wound Healing and Tissue Regeneration, Department of Periodontics, University of Illinois at Chicago

Clinical and preclinical research supports the hypothesis that females are more susceptible to stress-related affective disorders than males. Additionally, adolescence may be a critical period in which stress modulates long-term mental health outcomes. For example, previous work in our lab has demonstrated that adolescent stress induces sustained depressive-like behavior in female, but not male rats. Here, we tested the hypothesis that adolescent stress primes the female rat brain for subsequent exacerbated neuroinflammatory responses in adulthood more than in males. We first exposed male and female rats to mixed-modality stress (e.g., restraint, isolation, social defeat) during adolescence (PND 37-49). Three weeks later, rats were injected with lipopolysaccharide (LPS; 250 µg/kg; i.p.) or saline and perfused brains and blood were collected 4 hours later. In contrast to the persistent depressive-like behavior observed previously in female rats following this adolescent stress, hippocampal gene expression of inflammatory markers (IL-1beta, TNFalpha, NF-kappaB) after LPS (or saline) was not affected by adolescent stress in females. Conversely, adolescent stress exacerbated hippocampal IL-1beta, TNFalpha, NF-kappaB, and CD11b gene expression following LPS in males. These effects on neuroinflammatory markers in males occurred in the absence of an LPS-induced rise in circulating corticosterone, whereas this corticosterone response was present in females. These data suggest that males are more susceptible to long-term neuroinflammatory consequences of adolescent stress, whereas females are more susceptible to affective behavioral consequences.

POSTER ID: 829

Sexual differences in oxytocin innervation of the hindbrain

Abstract Presenter: Nafissa Ismail

Other Authors: Benjamin Rood, Benjamin Chen, Philip Castonguay and Geert J. de Vries

Author Affiliations: 1Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA, 2Department of Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA

The presence of oxytocin has been well characterized in the mouse forebrain. In this region, oxytocin is known to modulate autonomic functions and social, sexual, and possibly ingestive behaviors. However, the presence of oxytocin in the mid- and hindbrain is not well characterized in mice. Therefore, in the present study, we examined the distribution of oxytocin in the mid- and hindbrain in sham operated or gonadectomized adult male and female C57Bl/6 mice. The results showed that in both the locus coeruleus and the parabrachial nucleus, the density of oxytocin fibers is sexually dimorphic with males having a lower density of oxytocin fibers than females. Moreover, gonadectomy did not alter this difference, suggesting that these differences were not due to differences in circulating gonadal hormone levels and could be due to organization effects of hormones or directly related to differences in sex chromosomes. We used the four core genotype mice to determine whether sex differences in oxytocin expression depend primarily on the nature of the gonad or sex chromosomal complement. Using in situ hybridization, our results showed that this sex difference does not depend on sex chromosomal complement, which leaves organizational effects of gonadal hormones as the most likely cause. These findings are the first to demonstrate a sex difference in the distribution of oxytocin fibers in the hindbrain and suggest possible mechanisms underlying sex differences in the control of pain, autonomic reflexes, and ingestive behavior. This study is supported by NSF grant IBN 9421658 to GJD.
POSTER ID: 830
Prenatal testosterone interacts with prenatal stressor exposure differentially based on child sex to predict preschool hyperactivity-impulsivity

Abstract Presenter: Michelle M. Martel, Ph.D. 1
Other Authors: Bethan Roberts, M.S. 1

Disruptive Behaviors Disorders (DBD), including Oppositional-Defiant Disorder (ODD) and Attention-Deficit/Hyperactivity Disorder (ADHD), are fairly common and highly impairing childhood behavior disorders that are approximately three times as common in boys as girls as early as they can be reliably diagnosed during preschool. Prenatal exposure to testosterone may be particularly relevant to these early-emerging DBD, operating to increase risk by making males (vs. females) more sensitive to environmental conditions during pregnancy. The current study examined associations between preschool DBD symptoms and prenatal testosterone exposure, as well as possible interactions between prenatal testosterone exposure and prenatal environmental stressors, such as alcohol and drug exposure, that might increase risk differentially based on child sex (Beauchaine et al., 2009). The study sample consisted of 109 preschool-age children between ages 3 and 6 (4.34 [1.08]; 61% boys; 18 ODD, 18 ADHD, 43 ODD+ADHD, 30 non-DBD) and their primary caregivers. Primary caregivers completed a semi-structured interview (i.e., Kiddie Disruptive Behavior Disorder Schedule), symptom questionnaires (i.e., Disruptive Behavior Rating Scale [DBRS], Peer Conflict Scale), and a questionnaire on alcohol and nicotine use during pregnancy; teachers and/or daycare providers completed symptom questionnaires (i.e., DBRS); and children provided measures of prenatal testosterone exposure, measured indirectly via finger length ratios (i.e., right 2D:4D) assessed via electronic caliper. Higher prenatal testosterone exposure was associated with increased hyperactivity-impulsivity ($t = -2.4, p = .04$), but not with inattention, ODD, or CD symptoms (r range $= -1.61$-$0.39, p range $= .174$-742). Prenatal testosterone exposure interacted with prenatal nicotine use to predict teacher-rated hyperactivity-impulsivity during preschool, for boys ($t = -1.98, p = .048$), but not girls ($t = -1.45, p = .17$), although the three-way interaction was not significant ($t = -6.0, p = .55$). As shown in Figure 1, boys exposed to higher prenatal testosterone and increased nicotine use during the prenatal period exhibited higher hyperactivity-impulsivity during preschool, while this effect was largely absent for girls. Prenatal testosterone also interacted with prenatal alcohol exposure to predict teacher-rated hyperactivity-impulsivity differentially based on child sex (three-way interaction $t = -2.11, p = .04$). As shown in Figures 2 and 3, boys who were exposed to higher levels of prenatal testosterone and alcohol during pregnancy exhibited increased hyperactivity-impulsivity during preschool, but girls did not exhibit this same pattern. Overall, prenatal testosterone exposure seems to interact with prenatal stressors differentially based on child sex, to increase risk for early-emerging sex differences in preschool DBD, particularly hyperactivity-impulsivity.

POSTER ID: 831
Sexually dimorphic placental responses to maternal air pollutant exposure: the root of sex differences in behavioral and metabolic outcomes of adult offspring?

Abstract Presenter: Jessica L. Bolton 1
Other Authors: S. Nicholas Mason 2, Erin N. Potts 3, M. Ian Gilmour 4, W. Michael Foster 1, Richard L. Auten, M.D. 2 and Staci D. Bilbo, Ph.D. 1

Author Affiliations: 1Department of Psychology and Neuroscience, Duke University; 2Department of Pediatrics, Neonatology Division, Duke University Medical Center; 3Department of Pulmonary Critical Care Medicine, Duke University Medical Center; 4Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC

Sex differences in offspring outcomes following maternal inflammatory insults during pregnancy are gradually gaining recognition in the field of fetal programming. It has been suggested that this is due to the sexually dimorphic strategies male and female placenta employ in a compromised intrauterine environment (Clifton, 2010). We have previously shown that maternal exposure to air pollutants (specifically diesel exhaust particles) during pregnancy markedly increases proinflammatory cytokine expression in the placenta, lung, and brain of E18 mouse offspring (sex undetermined; Auten et al., 2011). Our current research is now revealing that there are marked sex differences in the fetal cytokine and chemokine response to maternal air pollutant exposure in the placenta, but not in the lung or brain. Female offspring of diesel-exposed mothers have higher placental levels of fractalkine, IL-10, eotaxin, and IL-1β compared to...
matched male offspring. If female placenta mount a larger immune response to inflammatory challenges than male placenta, then female offspring may have fewer long-term adverse consequences because they can resolve the inflammatory challenge more quickly. In order to explore this hypothesis, we assessed the health of both sexes in adulthood, both at baseline and after exposure to a high-fat diet, which can be considered an inflammatory challenge. We found that male offspring born to diesel-exposed mothers weigh more in adulthood than males born to control mothers. Furthermore, after being placed on a high-fat diet, male offspring born to diesel-exposed mothers develop significantly elevated insulin levels and heightened levels of anxiety, whereas female offspring of diesel-exposed mothers do not show these same adverse effects. Interestingly, we found increased microglial surface antigen (Iba1) expression in the hypothalamus and amygdala of male offspring of diesel-exposed mothers that were placed on a high-fat diet in adulthood. However, these same increases in microglial activation were only observed in the hypothalamus of matched female offspring. These results may be indicative of sexually dimorphic microglial priming in certain brain regions, which may be a consequence of the observed sex differences in placental cytokine response to maternal air pollutant exposure during a critical period of brain development. This study was supported by a Research Incubator Award to S.D.B. and R.L.A. from the Duke Institute of Brain Sciences.

POSTER ID: 832
Does exercise have beneficial effects on stress in female rats?

Abstract Presenter: Alexis B. Jones
Other Authors: Kathleen S. Curtis
Author Affiliations: Oklahoma State University Center for Health Sciences, Department of Pharmacology and Physiology, Tulsa, OK

Exercise may be beneficial in coping with stress and anxiety. In fact, chronic exercise has been shown to alleviate symptoms of stress and anxiety in humans and laboratory animals; however, the mechanisms conferring this protection remain poorly understood. Voluntary physical exercise produces many physiological effects that promote both physical and psychological health. Stress, on the other hand, poses a significant risk factor for many of the same health conditions — e.g. cardiovascular disease, depression, diabetes. The beneficial effect of exercise may be particularly important for women, as anxiety and depression increase after menopause. Therefore, the present experiments were designed to investigate whether voluntary physical exercise, in the form of wheel running, affects circulating levels of the stress hormone corticosterone (CORT) in response to an acute physical stressor. We hypothesized that exercise would blunt the CORT response to restraint stress in female rats and that estradiol plus exercise would further decrease CORT.

Adult female Sprague Dawley rats were ovariectomized (OVX) and given 7 days to recover. OVX rats were given 17-β-estradiol-3-benzoate (EB) or OIL for two consecutive days and were tested during the next two days. Rats were subjected to restraint stress by being placed in a plastic restrainer for 40 min prior to being returned to their home cage or to a novel cage with a voluntary running wheel attached. Software on these latter cages recorded distance, speed, and time spent on wheels for 14 hours, which included the 12-hour period of lights off. The next morning, rats were anesthetized using CO₂ and decapitated. Blood was collected for corticosterone analysis. Additional groups of hormonally intact and OVX rats were sacrificed for CORT analysis after restraint stress without access to running wheels or given 24-hour access to running wheels for 4 weeks prior to restraint stress.

There were no differences in CORT levels between exercised and non-exercised rats that were not subjected to restraint stress. There was, however, a heightened CORT response to restraint in the EB-treated animals. A single bout of exercise blunted the CORT response to restraint, especially in the EB-treated group. Similarly, four weeks of voluntary running reduced the CORT response to restraint in hormonally intact female rats, but not in OVX rats.

Exercise alone does not alter circulating CORT levels in exercise-naive female rats with or without EB. Stress alone increases CORT and a single bout of exercise may reduce the CORT response in EB-treated rats. Long-term exercise may further blunt the CORT response in hormonally intact female rats. Thus, even a single bout of exercise is effective at reducing circulating stress hormone levels.

With increased exercise duration, CORT may be even further reduced. These findings differ from our recent behavioral studies of anxiety-like behaviors after restraint stress and voluntary exercise, in which we found that restraint stress paired with access to voluntary running increased anxiety-like behaviors in both OIL- and EB-treated rats.

Therefore, a single exercise bout or chronic exercise may reduce stress hormones in females with estrogen; nonetheless, either may increase anxiety-like behaviors.
POSTER ID: 833
Acute restraint stress activates vasopressin and oxytocin cells in the supraoptic nucleus of male and female rats

Abstract Presenter: Joseph I. Terranova, B.S./B.A.
Other Authors: Clemens K. Probst, B.S.; Matthew J. Paul, Ph.D.; and Geert J. de Vries, Ph.D.
Author Affiliations: 1Center for Neuroendocrine Studies, University of Massachusetts Amherst

In this study, we investigated sex differences in the stress-induced activation of the neurotransmitters arginine-vasopressin (AVP) and oxytocin (OXT) using the immediate early gene, c-FOS, as a marker of neural activation. We used an acute restraint stress paradigm, where male and female wistar rats were subjected to a one-time 30-minute restraint test. Following the restraint test, animals were perfused with 4% paraformaldehyde and brain tissue was immunohistochemically processed for c-FOS, vasopressin-neurophysin, and OXT. Neural activation of AVP and OXT was measured in the supraoptic nucleus (SON) using immunofluorescence and confirmed by confocal microscopy. Restraint animals exhibited significantly greater activation of AVP and OXT in the SON than non-restrained controls. There were no significant sex differences in the activation of AVP and OXT in the SON. Our results further elucidate the neurobiological mechanisms of stress and reveal potential therapeutic targets for stress-related disorders.

POSTER ID: 834
Recent suicidal ideation among female and male university hospital surgeons in Sweden and Italy (the HOUPE study): association with work stressors

Abstract Presenter: A. Fridner, Ph.D.
Other Authors: M. Wall, B.Sc.; D. Minucci, M.D., Ph.D.; M. Marini, Ms.C. and K. Schenck-Gustafsson, M.D., Ph.D.
Author Affiliations: 1Centre for Gender Medicine, Karolinska Institutet, Stockholm, Sweden; 2Department of Psychology, Stockholm University, Sweden; 3Departments of Obstetrics and Gynecology, Psychiatry and Psychology, Padua University Hospital, Italy

Background: Suicide rates for physicians are noted to be higher than for the general population. Surgeons have been reported to admit to more suicidal thoughts than other physicians. Suicide ideation is a recognized precursor of suicide. Surgeons in university hospitals work in a highly demanding work place, with long hours and stressful assignments. Studies have shown that surgeons are at high risk of burnout, and it is likely that work environmental factors are related to suicidal thoughts among surgeons.

Methods: Cross-sectional questionnaire based study including the general Nordic Questionnaire for Psychological and Social Factors at Work (QPS-Nordic), Physician Career Path Questionnaire (PCPQ) and the Mehan Suicidal Ideation Scale. Surgeons working at a university hospital in Stockholm completed the questionnaire. Multiple logistic regression was used to identify independent variables showing the strongest association with suicidal ideation within the last 12 months.

Results: Altogether 19 of 122 (16%) Swedish and Italian female surgeons, and 39 of 233 (17%) Swedish and Italian male surgeons reported having suicidal thoughts within the last 12 months. Among the female physicians, adjusting for non-significant covariates having a partner and number of children, work-related variables associated with recent suicidal ideation were: having been subjected to degrading experiences at work (Odds Ratio (OR)=4.29, 95% Confidence Interval (CI)=1.52-12.11) and role conflict (OR=2.03, CI=1.14-3.60). Having regular meetings to discuss stressful situations were protective (OR=0.61, CI=0.078-0.61). The same covariates were included for male surgeons, for who having been subjected to degrading experiences at work was significant (OR=3.43, CI=1.62-7.23) and also sickness presence (OR=1.67, CI=1.19-2.34).

Conclusions: Role conflict was related to suicide ideation among female surgeons, and sickness presence among male surgeons. Recent suicide ideation among both female and male surgeons showed strong association with an important work stressor: having been subjected to harassment at work. For female surgeons, having meeting to discuss work stressor may be protective.

POSTER ID: 835
Characteristics of female and male academic physicians working while ill (the HOUPE study)

Abstract Presenter: Ann Fridner, Ph.D.
Other Authors: Marie Gustafsson Sendén, Ms.C.
Conclusions: A great amount of physicians are working while they are sick, female physicians significantly more often than male physicians. Triggers for females are not being able to decide of working time, and for males role conflict and suicide ideation. Work-place interventions could decrease this maladaptive behaviour.
ment. Changes are conceivable here, but slowly because they would involve sociopolitical issues. In addition, however, the motive for taking up this profession, just as for practically all university degrees, was the desire to work with people and to help others. This was also true of men, but always to a lesser degree. Especially disappointing is the small percentage of women whose interest in research caused them to pursue this profession. In this respect we can ask ourselves whether medical care should have a greater significance on the career ladder, or whether a second, more patient-oriented career ladder should be developed alongside the purely scientific criteria.

POSTER ID: 837
Women doctors at Innsbruck Medical University – affirmative action for women vs. feminization of medicine

Abstract Presenter: Angelika Bader, M.D.¹
Other Authors: Barbara Waldenberger-Steidl, M.D.¹, Margarethe Hochleitner, M.D.¹
Author Affiliations: Innsbruck Medical University, Women’s Health Centre, Innsbruck, Austria

The Austrian University Law dictates affirmative action for women and the compatibility of work and family. Numerous affirmative action dictates, quotas and anti-discrimination laws have been enacted. Have the female physicians at the university hospitals benefited from them? Can we see any effects or positive results?

The annual reports of the university hospital were used for data compilation, and in 2002 and 2012 the female physicians at Innsbruck Medical University were surveyed using a standardized anonymous questionnaire.

According to the medical university’s staff appointment scheme for 2002, 352 female physicians were employed, or 35.8% of the total physicians. In 2012 the total number of physicians had increased to 1202, of which 530 (44.1%) were women. The number of female physicians thus increased by 50.6%, that of male physicians by only 6.3%. In 2002 and 2012 two university clinics were headed by women alongside a field of 40 male clinic heads. The questionnaires show that the number of permanent positions held by women doubled; in 2002 24.4% of the female physicians held a permanent position and in 2012 already 49.0%. A breakdown for 2002 shows 55.7% of the female physicians to be in training for a specialization, 35.1% to hold a specialization, 8.5% to be training in general medicine and 0.4% of the female physicians to hold a license to practice general medicine; 0.4% did not specify. In 2012 we see 40.7% of the female physicians to be training for a specialization, 47.6% to have a specialization, 5.5% to be training in general medicine and 4.8% to hold a license to practice general medicine, while 1.4% did not specify.

At first glance affirmative action for women can be called a success. In these 10 years the number of female physicians rose by 50.6%, and that alone would already be a success. More than that can not be derived from the annual reports. The questionnaires also largely show good figures. The fact that the number of women in permanent positions doubled can also be viewed as a positive outcome of affirmative action for women. However, a closer look at the breakdown shows the for 10 years logical but nevertheless aimed-for rise by women from training positions to fully qualified specialist positions. On the other hand, the percentage of women training to practice general medicine has meanwhile declined, because this job category has largely been downscaled and is now almost exclusively for women. We find an increase in the number of women licensed to practice general medicine and holding a permanent position; meanwhile this is a purely female domain. These last two job categories are those with the lowest salary, the least prestige and the fewest opportunities for advancement at the university hospital. Part of this very gratifying increase in the percentage of women doctors stems from these two job categories, which prompts us to ask ourselves whether this is the beginning of a feminization of medicine. Evidence for a trend to feminization is also given by the fact that in 10 years the number of female clinic heads has remained at two vs. 40 male clinic heads, despite changes in personnel. The opportunity for promotion to management positions has apparently not visibly changed for female physicians despite all dictates and affirmative action efforts.

POSTER ID: 838
Gender medicine education to healthcare professionals through e-learning. The experience of Karolinska Institutet Center for Gender Medicine

Abstract Presenter: Birgitta Hübinnie, R.N.¹
Other Authors: Juan Jesús Carrero, Ph.D.¹, Karin Schenck-Gustafsson, M.D., Ph.D.¹
Author Affiliations: Centre for Gender Medicine, Karolinska Institutet, Stockholm, Sweden

Gender-specific aspects of medical care are not yet integrated in the curricula for undergraduate education of healthcare professionals in Sweden or in most other countries. Computer assisted learning can represent an important asset in this process.

Since 2011 Karolinska Institutet implements an e-learning course on gender medicine (credited with 7.5 points of higher education), on the basis of constructive teaching alignment and problem-based learning. The aim of the course is to increase awareness of the social, psychological and biological similarities and differences between men and women, and how these impact on health care. Intended learning outcomes (ILOs) are:

1. To describe the basic principles of gender-based medicine and the concepts of sex and gender.
2. To reflect on how biological and socio-cultural aspects influence health and disease from a gender perspective.
3. To critically evaluate clinical evidence from a gender perspective identifying gender gaps and gender bias.
4. Using given principles, to solve a clinical case that involves gender-oriented critical thinking.

Teaching and learning activities aligned to these ILOs include group discussions (chat) about the participant’s professional experiences on gender medicine, team work with peer-feedback on consensus definitions on gender medicine, weekly journal clubs and power point presentations on gender-specific aspects of selected disease domains, and individual resolution (using the “Gender Lens tool” http://www.genderandhealth.ca/) with peer-feedback on pre-selected medical cases. An examination task includes the design and resolution of a clinical case by the participants, placed within their field of work/interest and/or their personal experience. Evaluation criteria for this examination task includes taking into consideration and reflecting upon the whole dimension of gender medicine (biological differences, treatment considerations and sociological/psychological aspects in both patient and healthcare providers) when solving such case.

So far 60 individuals from distant locations within the Nordic countries have completed this course and evaluated it as “a positive and eye-opening experience”, “a self-realization on unconscious stereotypes”, “a new tool for facing patients” or a “a useful learning for both professional and private life”. Most appreciated aspects were the flexibility of online working, the broadness of topics discussed and the multidisciplinary nature (medical doctors, nurses, psychologists, dentists, physiotherapists…) as well as the varied working experience of the participants (from last-year university students to 20 year professional experience), which allowed inter-generational and experience-based learning.

To conclude, e-learning can represent effective teaching and learning tool for gender medicine for both undergraduate and postgraduate education. Each learner can progress at his/her preferred pace and according to his/her professional background, linking people into learning communities without the need of physical encounters.

POSTER ID: 839
How to get gender medicine into medical universities

Abstract Presenter: Margarethe Hochleitner, M.D.
Author Affiliation: Innsbruck Medical University, Women’s Health Centre, Innsbruck, Austria

In Austria, we have a national and an international society for Gender Medicine and also national and international meetings every year. At all our medical universities we offer Gender Medicine as an elective. But how do we get Gender Medicine into the heads of our researchers? How do we incorporate Gender issues into all our lectures and all our research projects? We attempted to develop a method that would establish Gender Medicine as a regular subject, just as any other field of medicine.

Innsbruck Medical University offers two degree programs: Human Medicine and Dental Medicine. In both we introduced Gender Medicine as an elective, but at the same time we felt it was not enough to only teach volunteers. We wanted Gender Medicine to be a regular core subject, just like all other medical disciplines. So we included Gender Medicine in the compulsory curriculum twice. We started by teaching basics and then repeated the basics in the last year of medical training and discussed clinical experience with the students. Like all other subjects, Gender Medicine is included in the compulsory examinations. In the new degree program in Molecular Medicine Gender Medicine is incorporated as a Master Module that was developed in an EU project. Moreover, it is compulsory in the clinical PhD program, where the students also have to include gender questions and a gender project in their PhD thesis. Here, too,
we strive to have young researchers practice including Gender Medicine questions in all their projects as a matter of course. The next step in an Austrian scientific career is to be granted venia docendi. The criteria for venia docendi also include a compulsory Gender Medicine course. Here again we try to discuss the inclusion of Gender questions in all subject lectures and all research projects.

We have always seen Gender Medicine as a cross-cutting subject and thus from the beginning we aimed to cross-link Gender Medicine as a means of incorporating it in all medical disciplines. Moreover, we have also been successful in teaming up with Innsbruck University, where our ring lecture series is currently recognized as an elective for Gender Competence. Gender Medicine is also accepted as an elective in the PhD programs of all faculties, which gives rise to very interesting questions on Gender Medicine from completely different disciplines.

We started five years ago. In the beginning there were a lot of discussions and it was a controversial subject. Today it feels normal. So it looks like we were able to integrate Gender Medicine into the curriculum and into the research projects, at least those of our students. We hope that by including a Gender aspect in the scientific work for their PhD they will continue to do so in future.
POSTER ID: 901

Steroid concentrations in antepartum and postpartum saliva: normative values in women and correlations with serum

Abstract Presenter: Elizabeth Hampson, Ph.D.¹

Other Authors: Shauna-Dae Phillips, M.D.², Claudio N. Soares, M.D., Ph.D.¹, Meir Steiner, M.D., Ph.D.¹

Author Affiliations: ¹Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario; ²Department of Family Medicine, Mount Sinai Hospital, Toronto; ³Women’s Health Concerns Clinic, St. Joseph’s Healthcare; and Department of Psychiatry and Behavioural Neurosciences, McMaster University

Saliva has been advocated as an alternative to serum or plasma for steroid monitoring. Little normative information is available concerning expected concentrations of the major reproductive steroids in saliva during pregnancy and the extended postpartum. Matched serum and saliva specimens were collected in 28 women with normal singleton pregnancies between 32 and 38 weeks gestation and in 43 women during the first six months postpartum. Concentrations of six steroids (estriol, estradiol, progesterone, testosterone, cortisol, DHEA) were quantified in saliva by enzyme immunoassay. We found that steroid concentrations in antepartum saliva showed linear increases near end of term, suggesting an increase in the bioavailable hormone, for most of the major steroids examined. Observed concentrations were in agreement with the limited data available from previous reports. Modal concentrations of the ovarian steroids were undetectable in postpartum saliva and, where detectable in individual women, approximated early follicular phase values. Only low to moderate correlations between the serum and salivary concentrations were found, suggesting that during the peripartum saliva provides information that is not redundant to serum. This may be due, in part, to differential rates of change in the total and bioavailable fractions of the circulating steroid in the terminal weeks of the third trimester as a result of dynamic changes in carrier proteins such as corticosteroid binding globulin.

POSTER ID: 902

Investigating the timing of estradiol treatment on cocaine-induced conditioned place preference

Abstract Presenter: Linda I. Perrotti, Ph.D.¹

Other Authors: Samara A. Morris Bobzean¹, Torry S. Dennis¹, Alexandra Schiller, Aspen Samuel¹

Author Affiliations: ¹Department of Psychology, University of Texas at Arlington, Arlington, TX

Women and female rodents are more responsive to the stimuli that trigger drug use and craving than males. Previous work in our lab has demonstrated that female rats develop higher levels of cocaine-primed reinstatement to conditioned place preference (CPP) than males. These data indicate that females form stronger associations between cocaine and the environment in which it was administered. Current evidence suggests that increases in levels of estradiol increase the responsiveness of females to drug cues. However, our knowledge of the timing of the effects of elevated levels of estradiol during the different phases of drug use and learning is limited. In other words, are elevated levels of estradiol more influential in the processes of learning to associate cues/environments with the positive effects of drug or is estradiol more important in mediating the previously conditioned response. The aim of the present study was to compare the effects of estradiol administration given during the conditioning or testing phases of a CPP paradigm on the magnitude of cocaine-induced CPP. Ovariectomized adult rats received subcutaneous (s.c.) injections of 5ug of 17β-estradiol dissolved in 0.1ml of peanut oil (EB) or peanut oil (PO) during either the conditioning phase of CPP (COND) or the Testing (TEST) phase of CPP. On each of the three saline and three cocaine conditioning days, animals in the COND groups received s.c. EB or PO treatments 30 minutes prior to receiving interperitoneal (i.p.) injections of either 0.9% saline or 15mg/kg of cocaine and were then confined to the corresponding previously assigned saline/cocaine chamber for 30 minutes. On the day of the Preference Test, EB or PO treatments were withheld for animals in the COND groups while rats in the TEST groups were given EB or PO injections 30 minutes prior to the CPP acquisition test. During the Acquisition Test, all rats were allowed free access to all chambers for 15 minutes. While all rats acquired cocaine-induced CPP, the magnitude of CPP was significantly higher for all EB-treated animals compared with all PO-treated females. At this time, data comparing EB/COND and EB/TEST animals is inconclusive. Data analysis for these groups
is currently underway in addition to experiments examining a wider range of cocaine and estradiol doses.

This study is supported by a NARSAD award to LIP

POSTER ID: 903
Suppression of estrogen receptor alpha (ERα) in the mouse bed nucleus of the stria terminalis by testicular hormones is absent in neonates and reverses rapidly in adults

Abstract Presenter: D.A. Kelly, Ph.D.¹
Other Authors: A.A. Krentzel¹, N.G. Forger, Ph.D.¹

The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) is a sexually dimorphic region of the mammalian forebrain linked to male sexual behavior and the regulation of stress and anxiety. The BNSTp is larger in volume and cell number in males than females of several species including rats, mice, guinea pigs, and humans, and contains neurons that express both androgen and estrogen receptors. We have observed that the expression of ERα in the BNSTp is sexually dimorphic: the area of ERα immunoreactivity (IR) in male mice is less than 5% of that seen in females. We also demonstrated that this sex difference is due to the suppression of ERα by testicular steroids: three weeks after gonadectomy expression remains high in females and is elevated to male levels in males. Here we examined how quickly testicular steroids can suppress ERα in the adult BNSTp and when testicular hormones begin to suppress ERα during postnatal development. In adult males, ERα suppression is rapidly reversed after testicular hormones are removed: males show significant upregulation of ERα IR 24 hours after gonadectomy. ERα expression in the BNSTp could therefore be highly sensitive to changes in circulating testosterone, providing a potential mechanism for sex-specific regulation of functions linked to the BNST. During perinatal life, ERα plays an important role in the sexual differentiation of the BNSTp, reducing cell death in newborn males in response to estrogens derived from aromatized testosterone. We therefore examined the area positive for ERα IR in the BNSTp of male and female mice at birth (P1), the peak of neuronal cell death (P6), before puberty (P20), and in adulthood (P60). We found abundant ERα expression and no sex differences in BNSTp ERα IR at birth. Thus, prenatal androgens do not reduce ERα protein in males. In females, the area of ERα IR is stable through postnatal development when normalized for the size of the BNSTp. In males, the normalized area of ERα IR decreased about 50% between P1 and P6, but the marked reduction of ERα IR was only evident in adults, suggesting that the rise in circulating testicular hormones at puberty suppresses ERα in the male BNSTp. Supported by NIMH R01MH068482.

POSTER ID: 904
Effects of estrogen on food intake, weight gain and c-Fos labeling in the NTS in ovariectomized rats on a restricted feeding schedule

Abstract Presenter: Rebecca J. Naukam, M.T.S.¹
Other Authors: Zoey Miranda², Amie Francis³, Liming Fan, M.S.¹, and Kathleen S. Curtis, Ph.D.¹

It is well known that treatment with 17-β-estradiol-3-benzoate (EB) decreases ad libitum food intake and body weight gain in ovariectomized female rats. However, effects of EB on food intake and body weight gain have not been studied when access to food is limited. Therefore, the goal of this study was to determine whether EB affects food intake and body weight gain in ovariectomized rats on a restricted feeding schedule. We first monitored food intake for a two hour period during the day, as well as overnight each day for two weeks. Then the overnight feeding was omitted and the rats had food only during the two hour period each day, for an additional two weeks. EB-treated rats ate less and gained less weight compared to oil vehicle-treated controls (OIL) during the first week when feeding was restricted to the two hour period, but ate as much as did OIL-treated rats on the subsequent week. EB-treated rats maintained a lower body weight throughout the study. We also videotaped animals during the first week of the restricted feeding schedule to determine latency to eat. We did not find any difference in the latency to eat between EB- and OIL-treated rats, suggesting that there was no difference in learning the feeding routine. The mechanism for the transient difference in food intake during the first week of the restricted feeding schedule has not been elucidated, but one possibility involves inhibitory peripheral signals. We hypothesize that this transient effect of EB on food intake and weight gain is due to differences in sensitivity to signals
of gastric distention which are carried by vagal afferents to the hindbrain nucleus of the solitary tract (NTS). Accordingly, we examined c-fos labeling, a marker of neural activation, in the NTS of OIL- and EB-treated rats. There were few c-fos labeled neurons in the NTS of ad lib fed controls or in animals on the restricted feeding schedule that were not permitted to eat. In contrast, both OIL- and EB-treated animals that were on the restricted feeding schedule and allowed to eat had significantly greater levels of c-fos labeling in the NTS, as expected in rats that consume large amounts of food. The number of c-fos labeled neurons was comparable in the middle NTS; however, EB-treated rats had a somewhat greater number of c-fos labeled neurons in the caudal NTS compared to OIL-treated animals. The small difference between the OIL- and EB-treated animals in c-fos labeling in the caudal NTS is consistent with our hypothesis and suggests that the transient differences in food intake and weight gain during the first week of a restricted feeding schedule may be due to differences in sensitivity to signals of gastric distention carried by vagal afferents to the NTS. In particular, there may be greater responsiveness to such signals in the caudal NTS, where we also have found EB-dependent differences in estrogen receptor numbers.

In this study, we found that in vivo estrogen exposure significantly upregulated the expression and activity of neutrophil serine proteases including neutrophil elastase, proteinase 3, and cathepsin G. The Real-time RT-PCR analysis revealed that estrogen treatment increased neutrophil elastase mRNA level over 10 folds, and proteinase 3 and cathepsin G mRNA levels over 80 folds in splenocytes when compared to placebo. The Western blot analysis also indicated that neutrophil elastase protein level was remarkably enhanced in splenocytes from estrogen-treated mice. In accordance with increased mRNA/protein expression, the specific activities of neutrophil elastase, proteinase 3, and cathepsin G were increased in splenocytes from estrogen-treated mice when compared to control. Further flow analysis revealed that there was a substantial increase of neutrophils in both peripheral blood cells and splenocytes from estrogen-treated mice, suggesting that in vivo estrogen exposure promotes neutrophils development and differentiation. Interestingly, we found that nuclear STAT-1 and NF-κB protein were also proteolyzed in splenocytes from MRL-lpr mice, which accompanied with the increased neutrophil serine proteases expression and activity in splenocytes from MRL-lpr mice when compared to MRL controls. Also, selective inhibition of serine protease activity with 4-(2-Aminomethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) abolished the truncation of nuclear STAT-1 and NF-κB protein, and decreased the inflammatory IFNγ and nitric oxide production in activated splenocytes from MRL-lpr mice.

In addition to their critical roles in neutrophils mediated immune defense against microorganisms, neutrophil serine proteases also play an important role in the regulation of non-infectious inflammatory responses, innate and adaptive immunity. The contribution of neutrophils and neutrophil serine proteases in the pathogenesis of autoimmune lupus is emphasized in recent studies with the finding of neutrophil extracellular traps (NETs) in activating plasmacytoid dendritic cells to produce high level of type I IFN. Therefore, our novel finding of estrogen upregulation neutrophil serine proteases expression/activity provides a new insight into the un-
understanding of estrogen promotion of inflammation and certain type of autoimmune disease such as lupus. This study is supported by National Institutes of Health (5 R01 AI051880-05) and inter-departmental fund.

POSTER ID: 906

Estrogen upregulates IL-17 induction by regulating transcription factors and by epigenetic miRNA regulation

Abstract Presenter: Deena Khan

Other Authors: Rujuan Dai, Bettina Heid, and S. Ansar Ahmed

Author Affiliations: 1Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia

It is well documented that the majority of autoimmune diseases predominantly afflict females both in animal models and in humans. The precise underlying mechanism for this pathological sex differences in the immune system needs further investigations. The potential reasons for this gender disparity are sex hormones, sex chromosomes and epigenetic and environmental influences. Female sex hormone particularly estrogen plays an important role in modulating immune responses. We have recently reported that IL-17 levels are markedly induced in activated splenocytes by estrogen, an immunomodulatory hormone known to influence many female-predominant autoimmune/inflammatory diseases. It is now evident that IL-17 plays a major role in inflammation by regulating the induction of various proinflammatory genes, which aid in recruitment and activation of neutrophils. Although considered to be protective in infections, overproduction of IL-17 has been associated with aggravated tissue injury in many autoimmune diseases. However, the molecular basis of estrogen promotion of IL-17 is still unclear. Given that estrogen promotes IL-17 induction, and is involved in regulation of different transcription factors, we hypothesize that multiple transcription factors are involved in estrogen-mediated IL-17 induction. To test this hypothesis, we determined key transcription factors and microRNA (miRNA, which target transcription factors) that regulate IL-17 induction. Splenocytes from estrogen- and placebo-treated C57Bl/6 orchiectomised male mice were activated by known IL-17 stimulants (IL-6+TGFβ+antiCD3) and transcription factors and miRNA determined by Western blotting or Real-time PCR. IL-17 synthesis by activated splenocytes was markedly decreased following inhibition of Jak-2-STAT3 (by AG490) and of NF-κB (by A77 1726), suggesting their role in IL-17 induction. We also found that ROR T was increased in estrogen-treated mice and tended to correlate with IL-17 levels. Interestingly, IL-17 repressor protein Ets-1 was markedly decreased in estrogen-treated mice. Since Ets-1 is downregulated by miR-326, we investigated whether miR-326 is increased in estrogen-treated mice. We found that, miR-326 levels were upregulated in cells from estrogen-treated mice when compared with cells from placebo-treated mice, indicating possible miR-326-mediated downregulation of Ets-1 in estrogen-treated mice. These findings suggest that estrogen-upregulates IL-17 induction by increasing responsiveness to cytokines and by regulating multiple signaling pathways (JAK-2-STAT3; NF-κB and ROR T), and also by epigenetic miR-326 regulation of Ets-1. These novel studies may have far-reaching implications that could clarify our understanding of the mechanism of estrogen-mediated proinflammatory responses. Future studies are being conducted to study in detail the signaling events, which favor IL-17 induction in estrogen treated mice. This study is supported by NIH SR01 AI051880-05, Lupus Foundation and Intramural funds.

POSTER ID: 907

LPS induction of PGE2 synthesis, aromatase activity, and estradiol content is limited to the second week of life in the developing cerebellum

Abstract Presenter: Christopher L. Wright

Other Authors: Jessica F. Knutson, Kathy Kight, Katrina Williams, Margaret M. McCarthy

Given that autism spectrum disorder is strongly associated with not only pathologies in cerebellar morphology but also exposure to inflammatory stressors in utero and during early childhood, we hope to identify novel regulatory pathways for cerebellar development which can be perturbed by inflammatory responses during limited periods of development. We have recently shown the inflammatory mediator prostaglandin E2 (PGE2) increases aromatase activity and estradiol content to reduce the size of the dendritic arbor of Purkinje cells in both sexes and negatively impact social play behavior in male rats. PGE2 also mediates the febrile response because the preoptic area and hypothalamus tightly regulate production of PGE2 to control body temperature in response to indicators of infection, such as the cell wall components of gram negative bacteria, lipopolysaccharides (LPS). Despite the fact that the febrile circuit is discretely localized to the diencephalon, administration of LPS nonetheless floods the whole brain with PGE2. This raises the possibility that LPS...
exposure could stimulate PGE2 production, activate aromatase, increase estradiol content and blunt the dendritic development of Purkinje cells. Here, we will show LPS exposure increases PGE2 but not estradiol levels in the posterior vermis of the cerebellum six to eight hours after treatment during the second week of life on postnatal day (PN) 10 in both males and females. In contrast, LPS administration during the first and third weeks of life, PN4 and PN17 respectively, do not increase PGE2 levels in the posterior vermis even though LPS does increase levels in the preoptic area during the third week. LPS administration also increases the activity of aromatase 16 hours after treatment and the levels of estradiol 20 hours after treatment in both sexes. Co-administration of LPS plus nimesulide, an inhibitor of PGE2 synthesis, prevents the induction of aromatase activity. When interpreted, the results suggest that there is not only a critical period for LPS-induced PGE2 production during second week of life but also the loss of the sensitive window may be caused by the loss of ability of LPS exposure to induce PGE2 synthesis. Thus it may be moot to determine whether there is also a lost ability of LPS or PGE2 to induce aromatase synthesis of estradiol, or a lost ability of LPS, PGE2 or estradiol to influence Purkinje cell morphology during the first and third weeks of life. Given that no sex differences were found in the increases in either PGE2 or estradiol or the activation of aromatase, it still remains to be determined how manipulations of PGE2 signaling in the cerebellum affects social play behavior in males but not females.

POSTER ID: 908
Sex difference in microRNA Let-7f mediated neuroprotection following focal cerebral ischemia in rats

Abstract Presenter: A. Selvamani
Other Authors: R.C. Miranda* and F. Sohrabji
Author Affiliations: 1Neuroscience and Experimental Therapeutics, Women’s Health in Neuroscience, Texas A&M Health Science Center, College Station, TX

Age- and gender-related differences were observed in infarct volume in rats following focal cerebral ischemia. Previous work from our lab indicated that older females sustain a larger infarct as compared to younger females (Selvamani and Sohrabji, 2008), however this difference is not observed in age-matched males. Significant neuronal damage observed specifically in the older females may be due to the loss of ovarian hormones observed in this group, and also suggests that neuroprotective factors may be influenced by the endocrine environment. MicroRNA (miRNA) are an emerging class of therapeutic molecules for inflammatory diseases such as cardiovascular disease, cancer and stroke. MicroRNAs (miRNAs) are small, non-coding RNA molecules of 18-25 nucleotides that function as translational repressors by binding to complementary messenger RNAs (mRNAs), thus inhibiting translation and/or degradation of mRNA. In fact, miR-181 and miR124a have been implemented in neuroprotection and stroke-induced neurogenesis respectively, following ischemia. We focused on Let7f, a member of a highly conserved family of miRNA and because of its known role in regulating angiogenesis. Let7f also has a consensus binding sequence on the IGF-1 gene, which we recently showed is critical for estrogen-mediated neuroprotection in older females (Selvamani and Sohrabji, 2010b). Thus antagonists (inhibitors) to Let7f should elevate IGF-1 and promote neuroprotection. In adult females, ICV infusions of Let7f antagonists 4h post stroke significantly reduced cortical and striatal infarct volume as compared to animals infused with scrambled oligos. Furthermore, females treated with Let7f showed improved performance on sensory motor tasks. Surprisingly, infusions of anti-Let7f to age-matched males did not reduce cortical or striatal infarct volume and their performance on sensory motor tasks was no improvement from controls. In order to determine the impact of the gonadal hormonal environment, we performed an additional study using ovariectomized females. In ovariectomized females subject to MCA occlusion, anti-Let7f infusion had no effect on infarct volume and were similar to controls. To further determine whether the sex difference in Let7f action on infarct volume was associated with ovarian hormones such as estrogen, we evaluated several validated target genes for Let-7f that are also regulated by estrogen. These include the neurotrophin BDNF, the water channel Aquaporin-4 (AQP4), the tumor suppressor gene PTEN, the vesicular glutamate transporter SLC17A7 and the sterol reductase DHCR24 which also functions as a H2O2 scavenger. All of these genes were significantly upregulated by anti-Let7f in the ischemic cortex of intact females, while none of these genes were upregulated in the the ischemic cortex of males. Collectively these data suggest that post-stroke anti-Let7f treatment has therapeutic potential and that there is a sex difference in the role of anti-Let7f in stroke recovery, which may be related to the gonadal steroid environment.

Supported by NIH AG027684 and AG028303 to FS and AA013440 to RCM.
Poster ID: 909

Differential effects of sex and aging on stroke induced inflammation

Abstract Presenter: Bhati Manwani
Other Authors: Fudong Liu, Lauren Sansing, George Kuchel, Louise D. McCullough
Author Affiliations: University of Connecticut Health Center, Farmington CT

Stroke is the third leading cause of death in the U.S. and the leading cause of disability. Women enjoy a lower stroke incidence than men; however, this stroke risk is modified with age so that elderly women bear the major brunt of this disease. Inflammation plays a critical role in the response to stroke, and post-ischemic inflammatory responses strongly contribute to the extent of ischemic brain injury. Although much is known about the post-stroke inflammatory cascade in brain; the contribution of age and sex to post ischemic inflammation has been understudied. Aging is a non-modifiable risk factor for stroke and is a critical determinant to stroke outcome in the two sexes. Since 75-89% of strokes occur in the elderly, it is important to determine if the inflammatory response to ischemic stroke differs with age and biological sex before translation of immunomodulatory therapeutic strategies into the clinic. Therefore, the objective of this study was to characterize the differential effects of sex and age on post stroke inflammatory milieu of brain.

Young (6 months), aging (15 months) and aged (20-22 months) male and female C57BL6 mice were subjected to 60 minutes of transient middle cerebral artery occlusion (MCAO). Twenty four hours after MCAO surgery, Brain mononuclear cells (BMNC’s) were harvested from ischemic hemisphere by using a 60 and 30% percoll gradient after collagenase and DNase enzymatic digestion. BMNC suspension was stained with fluorophore conjugated antibodies for CD45, CD3, CD11b, CD11c and Gr1 and the cells were counted using LSRII (BD Biosciences). We found that CD45hiCD3+T cell percentage was 13.6+/−3 in young male vs. 6.7+/−1.9 in young females; 29.8+/−6.8 in aging males vs. 9.6+/−3.27 in aging females, and 28.6+/−4.5 in aged males vs. 32.7+/−6.2 in aged females. We found a significant main effect of age F(2, 33)=10.4, p<0.05, sex F(1, 33)=4.04, p<0.05, and a significant age by sex interaction F(2,33)=3.25, p<0.05 in the percentage of T cells (CD45hiCD3+). The CD45hiCD3-CD11b+CD11c+dendritic cell percentages were 5.6+/−2.3 in young males vs. 20.6+/−5.4 in young females; 9+/−3 in aging males vs. 25+/−6.4 in aging females, and 20.4+/−4 in aged males vs. 20+/−3 in aged females. We saw a significant main of sex in the percentage of dendritic cells (CD45hiCD3-CD11b+CD11c+), F(1, 33)=7.794, p<0.05. There was no significant difference in the number of microglia (CD45 intermediateCD11b+) after stroke across age in both males and females. We conclude that T cell percentages in the brain significantly increase with age and are higher in young and aging males vs. females after ischemic stroke. Dendritic cell percentages are higher in the young and aging female vs. male brains after stroke. Our study suggests heterogeneity in inflammatory response to ischemic stroke in the two sexes across the lifespan. This work is funded by NS055215-06A1 and 11PRED40068.

Poster ID: 910

Anti-phospholipid antibodies and parathyroid hormone: a study of gender in Hughes Syndrome

Abstract Presenter: C. Nastro
Other Authors: M. Nastro¹, Z. Senatore¹, S. Esposito¹, C. De Gregorio¹, A. Vitagliano², P. Sabatini¹
Author Affiliations: ¹UO Clinic Pathology PO UMBERTO I, AS Salerno, Italy; ²AOU Careggi, Florence, Italy

The Anti-phospholipid Syndrome (APS), also known as Hughes syndrome, is a systemic autoimmune disease characterized by recurrent thromboembolic events (venous and / or arterial), abortion and the presence of antiphospholipid antibodies. The APS can occur during the course of other autoimmune diseases (secondary APS) or in primitive form. The APS is generally considered a gender disease, which mainly affects women with a ratio four to one to men (4:1). The purpose of this research project is to investigate the association between APS and high value of PTH. The aim of the study is also to assess whether this association is influenced by gender. The sera of 119 patients, including 59 with APS (48 women and 11 men) and 60 control subjects (50 women and 10 men), was subjected to the search of anti-phospholipid antibodies (aPL), antibodies cardiolipin and anti-2 glycoprotein I by enzyme immunoassay technique (ELISA), and intact PTH with technique of Electrochemiluminescence Immunoassay (ECLIA). 34% of the patients tested presents the Anti-Phospholipid Syndrome type I (APS I) while the remaining 66% is affected by the shape of type II (APS II). PTH levels were above the reference values in 44% of patients with APS (35% APS I, 65% APS II), while only 13% of the comparison group presents an increased secretion of parathyroid hormone. Analyzing data from a gender perspective, it was found that in 46% of women with APS...
there is association between an increased PTH secretion versus 36% of men tested. In the control group, negative for the aP, an altered secretion of PTH was only observed in women. The data obtained were subjected to statistical analysis. The 2 test has confirmed that the correlation between APS and hyperparathyroidism is significant with a probability of 99%. The calculation of odds ratio was greater than 1 (5.12), indicating the existence of a positive association. Finally, the AUC (p<0.0006), has revealed the usefulness of the PTH assay as a diagnostic test associated with the APS. The results obtained show the usefulness of the determination of PTH in suspected APS, a high degree of association between abnormal secretion of PTH and the onset of APS affects more females than males. The hypersecretion of PTH is associated more APS type II to APS type I, regardless of gender, given that a study aimed to understand the mechanisms involved, could clarify.

Poster ID: 911

Regional variation in cerebral glucose transport and insulin signaling across the estrous cycle

Abstract Presenter: Constance S. Harrell

Other Authors: Sanjana Malviya, Gretchen N. Neigh

Author Affiliations: 1Department of Physiology, Emory University, Atlanta, GA; 2 Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA; Neuroscience and Behavioral Biology Program, Emory College, Atlanta, GA; 4Center for Behavioral Neuroscience, Atlanta, GA; 5Comprehensive Neuroscience Center Child and Adolescent Mood Program, Emory University, Atlanta, GA

Glucose is the primary fuel of the brain and alterations in glucose availability directly impact neuronal function [1, 2]. Disease states such as diabetes affect cerebral glucose metabolism [3-5], and have been linked to neurodegeneration [6-10]. Variation in glucose transport is influenced by hormonal state, yet models of cerebral glucose transport focus on the male and ovariectomized female. Female sex steroids impact glucose metabolism in contrasting ways; estradiol enhances glucose uptake and insulin sensitivity, while progesterone decreases glucose uptake and promotes insulin resistance [11, 12]. Prior studies fail to explore how physiological fluctuations in sex steroids influence glucose transporters and insulin signaling. Our hypothesis is that natural variation in sex steroids across the estrous cycle co-occur with changes in glucose transporter and insulin receptor expression and function. Our research furthers understanding of cellular mechanisms whereby sex steroids modulate glucose metabolism, and are critical toward future studies examining glucose-dependent neurological diseases in the female.

Cerebral glucose uptake varies during the estrous cycle. Uptake is highest during proestrus in the rat, when estradiol levels peak[13]. Glucose uptake is mediated by facilitative glucose transporters (GLUTs), as outlined below [16]. The insulin receptor (IR) is a tyrosine kinase receptor that undergoes autophosphorylation to activate downstream cascades and produce insulin’s effects[17].

Cerebral Glucose Transporters [16]

<table>
<thead>
<tr>
<th>Transporter</th>
<th>Location</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>Endothelial cells; astrocytes</td>
<td>Transport across blood brain barrier (BBB); regulation of metabolic fuel to neurons</td>
</tr>
<tr>
<td>GLUT3</td>
<td>Widespread; Neuron (somatodendritic)</td>
<td>Primary transporter for uptake into neurons</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Cortex, Hypothalamus, Hippocampus, Cerebellum; Neuronal (somatodendritic)</td>
<td>Insulin-sensitive; IR activation induces GLUT4 trafficking to plasma membrane for uptake</td>
</tr>
</tbody>
</table>

Several experiments have demonstrated that sex steroids alter glucose metabolism. Treatment with 17β-estradiol increases expression of GLUT1 in ovariectomized rat BBB endothelium [18, 19] and GLUT3 and GLUT4 in ovariectomized rhesus macaque frontal cortex [20]. Estrogen receptor activation also increases IR activation and GLUT4 trafficking [21, 22]. Current research fails to explore the simultaneous influence of progesterone in cerebral glucose metabolism, which we do mechanistically across the estrous cycle.

Adult female rats (n=26) are swabbed to determine cycle stage, and 6-8 rats from each stage are selected along with six age-matched males. Rats are decapitated and uterine weights collected. Plasma estradiol, progesterone, and insulin are measured by ELISA. The hypothalamus, prefrontal cortex, and hippocampus are dissected, homogenized, and separated into total protein, plasma membrane, cytosolic, and microsomal fractions. GLUT1, GLUT3, GLUT4, and IR expression are examined by immunoblot. Microsomal and membrane fractions are compared for GLUT4 trafficking. IR activation is examined by blotting for phosphorylated IRβ subunit in plasma membrane.

We anticipate an increase in GLUT1, GLUT3, GLUT4 and IR expression, as well as enhanced GLUT4 trafficking and IR activation, dur-
Results: Menstrual cycle phase had a significant effect on seed-based FC in the DMN, left and right DANs. In the DMN, RM-ANOVA revealed regions of significant phase effect including bilateral dorsolateral prefrontal cortex, right hippocampus, bilateral middle temporal gyri and right parietal lobule. In the left and right DANs, widespread phase effect was discovered including bilateral thalamus, periaqueductal gray and bilateral dorsolateral prefrontal cortex. Almost exclusively, DMN and DAN FC was strongest during the ovulation phase. Menstrual cycle phase also had a significant effect on brain gray matter volume with a peak effect in the left and right parietal lobes, left and right middle temporal gyrus and right fusiform gyrus. Gray matter volume was greatest during the menstrual phase and reached its nadir during luteal or ovulation phase.

Conclusions: We found that in the DMN and right-seeded DANs, FC varied significantly across the menstrual cycle in healthy females, and peaked during ovulation. These findings support the notion that higher variation in connectivity in females when compared to males is at least partly due to menstrual cycle effects (Tomasi and Volkow, 2011). In contrast, while gray matter volume also varied significantly across the menstrual cycle, it was greatest in menstrual phase and lowest during the ovulation or luteal phases. These complex alterations in the neural architecture across the menstrual cycle reinforce the concept that acute alterations in hormone levels as experienced by a normally cycling woman have significant effects on neural processes (Hampson and Young 2008).

POSTER ID: 913
Influence of patient sex and gender on medication use, adherence and prescribing alignment with guidelines

Abstract Presenter: Amy Steinkellner, Pharm.D. ¹
Other Authors: S. Williams¹; W. Chen, Ph.D.¹; J. Borne, R.Ph.¹; D. Muzina, M.D.¹; M. Manteuffel, Pharm.D., M.P.H.²

Methods: fMRI sessions of thirteen normally cycling healthy women were analyzed for this study. Participants underwent four fMRI sessions during their menstrual, follicular, ovulation and luteal phase. Menstrual cycle phases were verified by serum hormone analysis. For VBM analysis we obtained T1 MPRAge volumes. Resting state fMRI scans consisted of 171 volumes collected with a TR of 2 seconds using echo planar imaging with a 3.594 x 3.594 x 6 mm resolution. fMRI data were analyzed using AFNI. To perform seed-based FC analysis we defined seeds, extracted the mean time series and regressed that time series to the whole brain on a voxel-wise basis. Within-subject analyses were performed on whole brain correlation coefficients for each seed using one-way RM-ANOVA for phase. We controlled for multiple comparisons using a Monte Carlo simulation to determine minimum cluster size.
Author Affiliations: Medco Health Solutions, Inc., Franklin Lakes, NJ; State of Washington, Office of the Medical Director

Background: Studies have demonstrated significant physiological differences in drug absorption, distribution, metabolism and excretion in women. To date, this knowledge has not been broadly translated into sex-specific dose and guideline development. Although poor adherence to therapies and clinical guidelines is known to be widespread and influenced by many factors, the influence of patient sex and gender is not well documented.

Objectives: This study investigated differences between men and women in medication use, adherence, and prescribing alignment with evidence-based guidelines.

Methods: A national pharmacy claims database was used to describe medication use, adherence and prescribing alignment with evidence based guidelines in nearly 30 million eligible members, age 18 to 65, between 1/1/2010 and 12/31/2010. Medication Possession Ratio (MPR) was calculated among utilizing members to measure adherence.

Results: Women were prescribed more medications across all age bands, an average of 5.0 drugs, compared to 3.7 drugs per eligible male member. During the study timeframe, 68% of female members were prescribed a chronic or acute medication compared with 59% of eligible males. The higher female average persists, even after accounting for prescription contraceptives. In addition to higher medication utilization, itself a risk factor for increased non-adherence, in 25 of 25 clinical measures relating to cardiovascular disease and/or diabetes, women were less adherent to medications and not prescribed medications in alignment with recommended clinical guidelines as often as men.

Conclusions: Sex-neutral prescribing may result in women being mis-dosed, potentially leading to suboptimal therapeutic outcomes and avoidable adverse events or side effects. Differences noted between the sexes in medication use, adherence, and prescribing alignment may indicate a need for more personalized dosing and therapeutic management to improve outcomes. These results warrant additional study and reporting of sex-based differences at all levels of basic and clinical research, as well as subsequent translation into more personalized and gender specific treatments, recommended dosing levels, and clinical guidelines.

Abstract Presenter: Dipali Davé, M.D. 1

Other Author: Beverly Gallauresi, R.N., M.P.H. 1

Author Affiliations: 1US FDA, Office of Women’s Health

Introduction: Sex differences found in males and females lead to variations in prevalence, progression of diseases and health outcomes. Factors such as physiology, genetics, body size, and hormones often elicit different responses to certain diseases and medical conditions. Although differences in efficacy and safety have been well documented in certain drugs, less information is available for medical devices. The purpose of this study was to review the US FDA approved orthopedic Premarket Applications (PMA) for demographic data including racial/ethnic subgroups.

Methods: All orthopedic clinical device studies submitted to the FDA in support of PMAs approved from January 2002 to December 2011 were reviewed. Descriptive analyses of demographic features of study participants were conducted to note trends in 12 month intervals in participation of females and racial/ethnic subgroups.

Results: Of the 32 submitted PMAs reviewed, 30 PMAs included participation percentages of males and females and 9 PMAs included racial/ethnic subgroup participation. Female participation was 50% in 2002, 36.5% in 2003, 46.8% in 2004, 50.2% in 2005, 38.5% in 2006, 35.9% in 2007, 46.4% in 2009, 49% in 2010, and 51.3% in 2011. Over the 10 year period an average of 45% of the clinical device studies participants were female. The average racial/ethnic subgroup participations over the ten years were White: 90.1%, Black/African American: 3.3%, Hispanic/Latino: 5.1%, Asian: 1.4%, Native Hawaiian or Other Pacific Islander: 0%, American Indian/Alaskan Native: 0.4%, and Other: 2%.

Conclusions: This ten year review indicates that with the exception of a two year decline (2005-2006) there has been a positive trend in female participation. However lower participation of females in hip replacement device studies was seen despite a higher prevalence of hip fractures in this population. Trend analysis in racial/ethnic subgroups over the past ten years proved difficult due to the low numbers reported in the clinical studies. The representation within these clinical device studies was 90% White and all other
subgroups were lower than the current demographic stratification of the US population. To conduct clinically meaningful analysis researchers should be encouraged to collect sex and racial/ethnic data in orthopedic clinical devices. FDA recently issued a Draft Guidance titled “Evaluation of Sex Differences in Medical Device Clinical Studies” which when finalized will provide guidance for the design and conduct of clinical studies to improve information about the safety and effectiveness of new medical devices in females.

POSTER ID: 615
Population pharmacokinetics of alcohol in Korean healthy subjects: effect of gender, AST on the pharmacokinetics of alcohol

Abstract Presenter: Byungjeong Song, M.S.1
Authors: Jung-woo Chae, B.S.1, Dong-hyun Kim, M.S.2, Byung-yo Lee, B.S.1, Kwang-il Kwon, Ph.D.1
Author Affiliations: 1College of Pharmacy, Chungnam National University, Daejeon, Korea, 2Pharmacology team, Hammi Research Center, Hwaseong-si, Korea

Alcohol is a psychoactive substance that has a very large variability on pharmacokinetics and effect according to individuals conditions such as race, gender, weight, etc. This study was performed to elucidate gender difference of alcohol pharmacokinetics in Korean healthy subjects using modelling skills. We administered alcohol (55.39 g alcohol, 19.5 v/v% alcohol 360 ml as Korean spirit) to Korean health human (male 22, female 7) over 40 minutes. Blood alcohol concentrations (BACs) were measured using breath alcohol analyser. Nonlinear mixed effect modelling with NONMEM(version IV) were used for analysing pharmacokinetics of alcohol and effect of gender. One-compartment model with zero-order elimination kinetics was used to explain time versus BACs. Forward selection and backward elimination were performed to find out covariate of alcohol pharmacokinetics. Visual predictive check (VPC) and bootstrap were performed to evaluate the model. Estimate of apparent volume of distribution (Vd/F) was 82.1 L. Absorption rate constant (ka) and elimination constant (K0) were 0.0655 min⁻¹ and 0.0559 g/min, respectively. Gender, AST were confirmed as significant covariates described the variability of alcohol pharmacokinetics. Thus, Gender is a significantly affected to alcohol pharmacokinetics in Korean subjects.

POSTER ID: 916
Gender differences in pharmacotherapy: a population based study

Abstract Presenter: Julia Daragjati, Ph.D. student¹
Other Authors: Umberto Gallo², Rosa Maria Gaión¹, Anna Maria Grion²
Author Affiliations: ¹Università degli Studi di Padova, ²Dipartimento Interaziendale per l’Assistenza Farmaceutica, Azienda Ospedaliera – Azienda ulss 16 di Padova

Introduction: It has been clearly evidenced that physiologic differences between men and women are numerous regarding every organ and apparatus as for cardio-vascular system, nervous system and immune system. These differences affect drug efficacy and safety including pharmacokinetic and pharmacodynamic aspects. Worldwide, efforts have been made to disseminate the relevance of taking sex and gender into account in different researches and clinical trials. Epidemiology is a great help in answering these questions by offering several measures to describe therapies outcome as predictors to health/disease patterns.

Objective: The purpose of this analysis was to explore, by using an administrative database, gender and age differences in drug prescriptions chargeable to the Local Health Service of the assisted population.

Methods: All residents of the Local Health Area 16 of the Veneto Region (Italy) ages 15-44, 45-64, 65-79 and >=80 years in the period 1¹ of January until 31¹ of December 2010, were included in the study. The Public Health Service system, covering this area, keeps record of all drug prescriptions from public or private Pharmacies. All medications dispensed during 2010 were considered and classified by ATC, Anatomical Therapeutic Chemical Classification System. Results were reported as odds ratios of prescriptions dispensed to males and females with 95% confidence intervals to screen the number of subjects that received at least one medication. A detailed analysis was conducted for Cardiovascular and Anti-diabetic drugs.
Results: Of the 491,261 included subjects, 255,026 were females and 236,235 males. Females were more treated in most of Chemical therapeutic subgroups as antiulcer drugs (OR=0.80, 95% confidence interval [CI] 0.74-0.86), antibiotics as for tetracyclines (OR=0.91 95% CI 0.85-0.93), penicillins (OR=0.90 in the 95% CI 0.83-0.94), anti migraine products (OR=0.34 95% CI 0.31-0.36), antipsychotics (OR=0.86, 95% CI 0.81-0.90), antidepressants (OR=0.44, 95% CI 0.40-0.52) diuretics (OR=0.72, 95% CI 0.66-0.80). Instead, males were more treated with antidiabetic drugs, insulin therapy (OR= 1.24 95% CI 1.21-1.30) and with oral hypoglycaemic (OR=1.37 95% CI 1.33-1.40), more treated also for cardiovascular disease with antithrombotic agents (OR=1.16 95% CI 1.14-1.20), betablockers (OR=1.15 95% CI 1.10-1.20), ACE-inhibitors (OR=1.25 95% CI 1.20-1.30). Males were generally more treated with cardiovascular medications. A more obvious gender difference was noticed between males and females of 15-44 years old, decreasing with aging, but still the difference remained statistically significant.

Conclusions: Our results support the hypothesis that in general females are more treated than males, consequently more exposed to chronic and acute conditions, especially in the reproductive years 15 to 44 and in pre- and post-menopausal age, according to the literature. Regarding to Cardiovascular drugs, on the contrary, men were more exposed than women.

POSTER ID: 917

Medical documentation for assessment of work ability in long-term sickness absence cases – the significance of patients gender and psychosocial conditions

Abstract Presenter: Anny Larsson
Other Authors: Anna Kiessling, M.D., Ph.D., Peter Henriksson, M.D., Ph.D., Britt Arrelöv, M.D., Ph.D., and Ann Fridner, Ph.D.
Author Affiliations: Department of Psychology, Stockholm University; Department of Clinical Sciences, Karolinska Institute; and Centre for Gender Medicine, Karolinska Institute.

There have been and still are differences in long-term sickness absence between different groups in Sweden. One of the most apparent difference can be found between women and men where women represent the majority of long-term sickness absences. In an agreement between the State, Local Authorities and Regions in Sweden, action against women long-term sickness and work absenteeism is being prioritized. This present study has been a part of the mentioned measure and investigates medical reports on health status used when assessing patients’ work ability. The aim was to determine if psychosocial aspects that are irrelevant to the medical condition are stated in medical reports on health status and if so are causing gender differences. To obtain information as to whether psychosocial aspects were described in the study base, 247 medical reports on health status were analysed using content analysis. The qualitative content analysis resulted in five categories with a total of 16 identified factors that were all of psychosocial nature and irrelevant to the patients medical condition. The identified factors became the basis for an assessment form that was later used on the survey data previously analysed. The analyses of the data from the review of the assessment form showed a correlation between the stated degree of reduced work ability and the presence of medically irrelevant psychosocial aspects. Thus our study reveals a gender bias in the assessment of long-term sickness absence, where women’s reduced work ability is to a bigger extent motivated by irrelevant psychosocial factors.
aim of this study was to determine the phenomenonology, gender prevalence of frequently diagnosed disease in Korea. Surveys conducted by the Health Insurance Review & Assessment Service (HIRA) of Korea between 2007 and 2011. Ages of subjects on this data, 0 to 80 years, are divided into 10 classes. Based on these classes, gender prevalence of frequently diagnosed diseases are analyzed in this study. Gender difference analyzed by epidemiology study can be a standard for gender ratio of subjects. It is expected that adverse reaction of medication by gender difference is reduced.

POSTER ID: 919
Gender and drug utilization – a systematic analysis of gender differences in prevalence of drug therapy in Sweden

Abstract Presenter: Desirée Loikas, M.Sc. Pharm.1,2
Other Authors: Björn Wettermark, M.Sc. Pharm., Ph.D.1,3, Mia von Euler, M.D., Ph.D.4, Karin Schenck-Gustafsson, M.D.2,5

Author Affiliations: 1Public Healthcare Services Committee, Stockholm County Council, Sweden; 2Centre for Gender Medicine, Karolinska Institutet, Stockholm, Sweden; 3Centre for Pharmacoepidemiology and Clinical Pharmacology, Karolinska Institutet, Stockholm; 4Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet; 5Department of Medicine, Cardiology Unit, Karolinska Institutet

A majority of the Swedish population purchases prescription drugs and most medical consultations result in a prescription. Gender differences in drug utilization have been demonstrated in several therapeutic areas. However, there is a lack of both comprehensive overviews on gender differences in entire populations and studies analyzing the rational of the differences.

In 2010, 2.8 million men and 3.6 million women (60% and 76% of all men and women in Sweden, respectively) purchased at least one prescribed drug. Data from the Swedish Prescribed Drug register, including all drugs dispensed to the Swedish population (9 million inhabitants), have been used to systematically describe and analyze gender differences in prevalence of drug treatment in the Swedish population 2010. All ATC 2nd level groups with ambulatory care prescribing accounting for >75% of the total volume in DDDs and a prevalence of >1% were included in the analysis. Some ATC 2nd level groups were subdivided into 3rd or 4th level to attain better description of the usage. Period prevalence was measured in number of patients per 1000 individuals (PAT/TIN) and differences between the sexes were calculated in both absolute and relative values (with 95 CI).

Fifty pharmacological groups were included in the study. Groups with large gender difference in absolute values with higher prevalence in women were e.g. antibiotics (264 vs. 195 PAT/TIN), hypnotics and sedatives (98 vs. 63 PAT/TIN) and drugs for acid related disorders (98 vs. 75 PAT/TIN). Groups with higher prevalence in men were e.g. antithrombotic agents (89 vs. 123 PAT/TIN), lipid modifying agents (77 vs. 105 PAT/TIN) and ACE inhibitors (57 vs. 84 PAT/TIN). Large relative differences with higher prevalence in women were seen for e.g. antimycotics (RR=6.6 (6.4-6.7)), thyroid therapy (RR=4.5 (4.4-4.5)) and antiobesity preparations (RR= 2.6 (2.6-2.7)). Large relative differences with higher prevalence in men were seen for e.g. psychostimulants (RR=0.62 (0.61-0.64)), antidiabetics (RR=0.68 (0.68-0.69)) and antithrombotic agents (RR=0.72 (0.72-0.73)).

There are differences in drug utilization between men and women in Sweden. Varying morbidity may explain some differences whereas other differences may indicate under- or over use of certain drugs in one of the sexes.

POSTER ID: 920
Minor gender differences in the introduction of new medicines in the Swedish population: a cross sectional population database analysis

Abstract Presenter: Desirée Loikas, M.Sc. Pharm.1,2
Other Authors: Lotta Eriksson3; Karin Schenck-Gustafsson, M.D.2,4; Björn Wettermark, M.Sc. Pharm., Ph.D.1,5

Author Affiliations: 1Public Healthcare Services Committee, Stockholm County Council, Stockholm, Sweden; 2Centre for Gender Medicine, Karolinska Institutet, Stockholm, Sweden; 3Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; 4Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden; 5Centre for Pharmacoepidemiology and Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden

Drug prescribing is one of the most important processes in healthcare with more than two thirds of all consultations in primary care resulting in drug prescriptions. Prior studies have shown that women have more healthcare consultations and higher drug utiliza-
tion than men. However some studies suggest that men receive newer and more expensive drugs.

We used data from the Swedish Prescribed Drug register, including all drugs dispensed to the Swedish population (9.4 million inhabitants), to study if there were differences in use of new drugs between men and women in Sweden. The analysis included eighteen new substances in ambulatory care launched in Sweden 2004-2005. Period prevalence (patients per 1000 inhabitants) and the ratio of each substance to other drugs in the same drug class (ATC) were calculated two and four years after registration. Results were presented as relative ratios (men/women).

The results showed no gender difference overall; about as many new substances were used more by men as by women. Minor gender differences were seen for individual substances such as eplerenone, rasaglinin and atazanavir, with higher use among men, and erlotinib, solifenacin and insulin glulisin, with higher use among women. However, these differences could potentially be explained by gender differences in morbidity and they did also decrease over time.

POSTER ID: 921
Binge drinking decreases density of myelinated fibers in the medial prefrontal cortex of male, but not female, adolescent rats

Abstract Presenter: Wanette Vargas
Other Authors: Alex Cilano, Aditi Dave, and Heather N. Richardson
Author Affiliations: 1Department of Psychology and Neuroscience and Behavior Program, University of Massachusetts-Amherst, Amherst, MA

Binge drinking is highly prevalent in teenagers and associated with an increased risk of addiction, cognitive impairments, and dysregulation of emotions, all of which are strongly dependent on the integrity of white matter in the prefrontal cortex. The present study tested the hypotheses that (1) binge drinking during adolescence will interfere with myelination of axons in the prefrontal cortex during development and that (2) there will be a sex difference in vulnerability to the toxic effects of alcohol on the prefrontal cortex, with increased toxicity in females. A voluntary operant binge drinking model was used to elicit high alcohol intake during early adolescence (postnatal days 28-42) in male and female Wistar rats. Brains were collected following intracardial perfusion 4-6 hours after the last session. Brains were sectioned coronally and Black Gold II (a gold phosphate complex) was used to label myelinated fibers in sections from the prefrontal cortex. Microscopic analyses were conducted to determine fiber density and index alterations in myelinization patterns in layers II, III, and V of the anterior cingulate, prelimbic, and infralimbic subdivisions of the medial prefrontal cortex. Results indicate that binge drinking is associated with decreased myelinated fiber density in the cingulate cortex of male (but not female) adolescent rats. This unexpected finding indicates that males may be more vulnerable to the effects of binge drinking on myelin on axons within this brain region. The functional consequence of the observed changes in myelin and neurobiological mechanisms by which in the males and females differ in these effects remains to be determined.

Support: NIH AA021013; NSF HRD 0450339

POSTER ID: 922
Social interaction as a predictive measure for alcohol intake in male and female Wistar rats

Abstract Presenter: Chrisanthi A. Karanikas
Other Authors: Michael Riad, Jesse McClure, Brian Whitcomb, and Heather N. Richardson
Author Affiliations: 1Psychology and Neuroscience, Univ. of Massachusetts-Amherst, Amherst, MA

Alcohol is one of the most common drugs of choice among teenagers. Normally, the method of consumption is drinking large quantities of alcohol in short periods of time, otherwise known as “binge drinking.” Elevated anxiety has been shown to be an outcome of high levels of alcohol exposure. However, preexisting anxiety may play a significant role in the onset of binge drinking. The present study tested the hypothesis that higher baseline levels of behaviors that have been previously used as indices of social anxiety would serve to predict alcohol intake during early adolescence. To test this hypothesis, male and female adolescent Wistar rats underwent a social interaction test as a measure of anxiety before exposure to high levels of alcohol throughout early adolescence (postnatal days 28-42). To measure voluntary binge drinking behavior, we used an operant self-administration model of intermittent access to sweetened alcohol, in which food and water was available ad libitum. Although
males and females differ in social interaction behavioral measures no clear relationship was evident between these behavioral measures and binge drinking during adolescence. Future analyses will utilize principal component analyses to determine whether multiple measures cluster to form more informative constructs that are predictive of adolescent drinking in male and female rats.

POSTER ID: 923

Differences between men and women with non-alcoholic fatty liver disease (NAFLD) in parameters of liver fibrosis, metabolism and lifestyle factors

Abstract Presenter: Miriam K. Leitner, Dr.¹

Other Authors: K. Leitner Mag.¹, A. Thomas Mag.¹, I. Kukurova, Dr.², S. Trattnig², A. Kautzy-Willer, Dr.¹

Author Affiliations: ¹Internal Medicine III, Endocrinology & Metabolism, Gender Medicine Unit, Medical University of Vienna, Vienna Austria, ²Highfield MR Center of Excellence, Medical University of Vienna, Austria

Aim: Although non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in adults and children worldwide, there are only a few studies focusing on gender specific differences in pathology, characteristics and treatment strategy of this disease. The aim of the current study is to detect differences and correlations in metabolic parameters, scores of liver fibrosis and lifestyle factors between men and women with and without non-alcoholic fatty liver disease (NAFLD), thus providing the basis for a sex- and gender-specific analysis of the risk profile „NAFLD“.

Materials and Methods: 21 male and 18 female overweight, non-diabetic participants were selected from a highly homogenous (according to age, lifestyle –eating habits, physical activity, smoking- and drinking- behaviour, BMI and education) sample. NAFLD was diagnosed with MRT (liverfat > 5%). Participants were divided into two groups (FLD= liver fat > 5%; CON= liver fat < 5%). All participants performed a 2h-oral glucose tolerance test (OGTT) and answered questionnaires (IPAQ, EPIC) regarding lifestyle (eating habit, MET minutes, socioeconomic status); anthropometric data (BMI, W/H Ratio) and blood parameters (liver enzymes, inflammatory markers, nutritional parameters) were measured additionally.

Results: FLD showed sex-differences in Waist-Hip-Ratio, whereas no differences in anthropometric parameters was detected in CON. Among FLD, women had significantly higher glucose load and C-peptide levels during the OGTT than their male counterparts, while there were no sex-differences in CON. Furthermore parameters of insulin-sensitivity (OGIS) and the Disposition Index were higher in men than in women in FLD. In FLD liver-fat highly correlated with liver enzymes ALT and AST in women but not in men. Two liver fibrosis scores (NAFLD-fibrosis-score and BARD-Score) showed significant differences between men and women with FLD.

Conclusion: Sex-specific differences in metabolic parameters are more pronounced among FLD when compared to CON. If the results of the current study prove valid in a larger cohort, insulin-sensitivity, parameters of OGTT, the liver enzymes ALT and AST, and Waist-Hip-Ratio should be considered when suggesting the implementation of a sex-specific score for NAFLD patients.

POSTER ID: 924

Gender differences in liver fibrosis progression in hepatitis C

Abstract Presenter: S. Piovesan¹

Other Authors: S. Gianni², M. Marcolongo¹, E. Miola¹, A. Alberti¹² and G. Baggio¹²

Author Affiliations: ¹Internal Medicine Unit, Azienda Ospedaliera di Padova, Italy; ²Department of Clinical and Experimental Medicine, University of Padova, Italy; ³Department of Molecular Medicine (DMM) University of Padova, Italy; ⁴National Research Centre for Gender Health and Medicine and Internal Medicine Unit, Azienda Ospedaliera di Padova, Italy

Aim: Although non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in adults and children worldwide, there are only a few studies focusing on gender specific differences in pathology, characteristics and treatment strategy of this disease. The aim of the current study was to assess sex differences in liver fibrosis progression in patients with chronic HVC infection.

Materials and Methods: 21 male and 18 female overweight, non-diabetic participants were selected from a highly homogenous (according to age, lifestyle –eating habits, physical activity, smoking- and drinking- behaviour, BMI and education) sample. NAFLD was diagnosed with MRT (liverfat > 5%). Participants were divided into two groups (FLD= liver fat > 5%; CON= liver fat < 5%). All participants performed a 2h-oral glucose tolerance test (OGTT) and answered questionnaires (IPAQ, EPIC) regarding lifestyle (eating habit, MET minutes, socioeconomic status); anthropometric data (BMI, W/H Ratio) and blood parameters (liver enzymes, inflammatory markers, nutritional parameters) were measured additionally.

Results: FLD showed sex-differences in Waist-Hip-Ratio, whereas no differences in anthropometric parameters was detected in CON. Among FLD, women had significantly higher glucose load and C-peptide levels during the OGTT than their male counterparts, while there were no sex-differences in CON. Furthermore parameters of insulin-sensitivity (OGIS) and the Disposition Index were higher in men than in women in FLD. In FLD liver-fat highly correlated with liver enzymes ALT and AST in women but not in men. Two liver fibrosis scores (NAFLD-fibrosis-score and BARD-Score) showed significant differences between men and women with FLD.

Conclusion: Sex-specific differences in metabolic parameters are more pronounced among FLD when compared to CON. If the results of the current study prove valid in a larger cohort, insulin-sensitivity, parameters of OGTT, the liver enzymes ALT and AST, and Waist-Hip-Ratio should be considered when suggesting the implementation of a sex-specific score for NAFLD patients.
and this difference was maintained after adjustment for covariables (age, BMI and HCV-genotype).

All patients were also analyzed for a 7 genes signatures (CRS) recently described to correlate with the risk of developing cirrhosis. In this analysis male patients showed a significantly higher CRS score (0.6828±0.12) compared to female patients (0.5276 ± 0.14; p<0.0001) and the percentages of patients with higher risk CRS was 52% for males and 20.5% for females (p<0.001). Interestingly, the 7 SNPs signature and several genetics aplotypes related to TLR4 gene showed a statistically significant correlation with liver fibrosis progression in male but not in female patients.

In a second analysis we evaluated the relationship between liver stiffness (measured by FIBROSCAN) and hemodynamic parameters of portal flow in 96 HCV patients (45 males, 51 females).

After stratification by age and cofactors, males had significant higher liver stiffness compared to females (<40 yrs 10.95 vs. 5.74 KPa; 40-60 yrs 14.42 vs. 10.66 KPa; >60 yrs 15.47 vs. 11.16 KPa; p=0.027). The mean maximum portal velocity showed a better correlation with liver stiffness in females compared to males.

These results provided evidence of a significant gender difference in development and pathophysiology of liver fibrosis in hepatitis C.
POSTER ID: 926
Integration of a longitudinal gender-specific women’s health curriculum: translating sex and gender-specific science into medical education

Abstract Presenter: Marjorie R. Jenkins, M.D.1,2
Other Authors: Joanna Wilson, D.O.1,2, Leigh Johnson, Ph.D.1,2, Betsy Jones, Ed.D.1,2, Robert Casanova, M.D.1, Richard Dickerson, Ph.D.1, Bradley Miller, M.D.1 and Simon Williams, Ph.D.1, Brittany Chan1,2, Michelle Devine1,2, Skyler Mclaurin1,2, Shaminia Parameswaran1,2, Michael Song1,2, Curtis Stennett1,2, Vera Von-Bergen1,2

Author Affiliations: 1Texas Tech University Health Sciences Center School of Medicine, 2Laura W. Bush Institute for Women’s Health

There is a growing body of scientific knowledge on sex and gender differences as it relates to all levels of human function. Medical students must be prepared to provide healthcare that incorporates the question and application of answer of the question “Does Sex/Gender Matter?” at the earliest stages of clinical evaluation. With support from the Dean and collaboration with the Laura W. Bush Institute for Women’s Health at Texas Tech University Health Sciences Center, the TTUHSC School of Medicine is developing a longitudinal 4-year curriculum in Gender-Specific Women’s Health (GSWH). Sex and gender are basic human variables which all humans have without exemption. While the GSWH curriculum content will focus on sex and gender differences across the lifecycle including differences in manifestations and processes of pathology and treatment; it is the goal of this project to assimilate sex and gender awareness throughout the entire medical school curriculum through the creation of an ongoing gendered learning environment for both faculty and students. Innovations such as a longitudinal “family” case series in problem-based learning cases will be utilized throughout the 4-year curriculum. A web-based monthly CME module for faculty, residents and students, will focus on sex and gender differences across the “Top 20 Health Topic” addressing gender issues in patient communication, diagnosis, prognosis, and treatment of major common health issues. Our current curriculum has been assessed for sex and gender content of YR1 and YR2 through a model Student Scholars real-time audit as well as cross-referencing content with the textbook of Gender-Specific Medicine (Legato 2nd ed.)

This poster outlines accomplishments in years 1 and 2 of the TTUHSC School of Medicine GSWH Longitudinal Curriculum development including curriculum audit results, and ongoing plans for Years 3-5 including curricular initiatives, learning activities, and evaluation strategies, while providing opportunities for peer institutions to collaborate.

POSTER ID: 927
Rhetoric to action: national initiatives to integrate evidence-based sex and gender differences into medical education

Presenting Author: Jan Werbinski, M.D.1,2
Other Authors: Kim Templeton, M.D.1,3, Jodi Godfrey, M.S., R.D.1, Marjorie Jenkins, M.D.1,4

Author Affiliations: 1Advancing Women’s Health Initiative of the AMWA/ACWHP Working Group, 2Western Michigan University, 3University of Kansas, 4Texas Tech University Health Sciences Center

Laura W. Bush Institute for Women’s Health

Background: Despite significant scientific evidence on sex- and gender differences in health at all levels of function; gaps remain in incorporating this critically important dimension in teaching, research and practice. Suboptimal health outcomes for women stem from barriers at multiple levels. The recent Institute of Medicine report Women’s Health Research: Progress, Pitfalls, and Promise notes that although strides have been made in research on women’s health issues, challenges remain in translating research into practice.

Objectives: The Women’s Health Working Group (WHWG), conceived in 2009 by the American Medical Women’s Association and collaborating with the American College of Women’s Health Physicians, has a mission to integrate sex- and gender-specific data in medical education and facilitate translation of sex and gender-specific women’s health into clinical practice.

Methods: The WHWG is raising awareness of the need for sex- and gender-specific medical education, as well as facilitate this education, initially by disseminating sex- and gender-specific educational and research resources through an online, free-of-charge repository of resources – the Advancing Women’s Health Initiative (AWHI). This digital library, housed at advancingwomenshealth.com, has an accompanying blog. The group is working with the National Board of Medical Examiners (NBME) to assess the presence of sex- and gender-specific competencies in testing materials and to identify any potential gaps.

Results: To date, the AWHI has 160 contributing members and 14 official collaborating organizations. The oversight committee for this
initiative includes a multidisciplinary group of 40 national experts in women’s health and gender-specific medicine. The digital library has 49 folders, more than 300 documents, including journal articles, curricula, PowerPoint presentations, and other teaching materials. The blog has had over 22,500 visitors, both national and international. This work will also highlight national climate in this area through reporting of student awareness and interest in sex and gender differences curricula and student knowledge of sex and gender in specific disease processes.

Conclusions: The efforts of the AWHI are building the infrastructure that is vital to addressing gaps at all levels - research, education and clinical practice - to advance the integration of sex- and gender-specific medicine from the bench to the bedside.

POSTER ID: 928
Gender-specific women’s health longitudinal curriculum project: curriculum analysis and competencies

Abstract Presenter: Brittany Chan, M.S.3
Other Authors: Skyler McLaurin, M.S.2, Michelle Devine, M.S.2, Shamin Parameswaran, M.S.2, Michael Song, M.S.2, Curtis R. Stennett, M.S.3, Vera Von Bergen, M.S.3, Faculty of the Gender-Specific Women’s Health Curriculum Working Group*

Author Affiliations: Texas Tech University Health Sciences Center, School of Medicine, Lubbock TX, TTUHSC Texas Tech University Health Sciences Center Laura W. Bush Institute for Women’s Health

Introduction: Texas Tech University Health Sciences Center School of Medicine and the Laura W. Bush Institute for Women’s Health are currently in year 2 of a 5-year curriculum project to integrate Gender-Specific Women’s Health (GSWH) information across the 4-year curriculum.

Methods: Three MS1s and three MS2s were selected to audit their coursework for sex and gender-based content. Students attended lectures/small groups and documented relevant content on a WebCT forum. Issues unique to women (e.g., pregnancy, menopause, etc) were not included in the final audit. To measure coverage of gender-based health issues, we used a leading text in gender-based medicine, The Principles of Gender-Specific Medicine (2nd ed., Legato). A separate medical student investigator and a faculty investigator independently compared a list of competencies formulated from Legato’s textbook to the 2010-2011 MS1 curriculum. The MS2 curriculum comparison is in progress.

Results: Analysis indicated that the current curriculum adequately covers gender differences in disease prevalence and normal anatomy/physiology. There was relatively little coverage of pathology, diagnosis, treatment, outcomes, or prognosis.

Audits of four MS1 courses found that Structure and Function of Major Organ Systems and Host Defense contained the majority of gender-related content. Out of four MS2 courses, the most gender content was found in System Disorders 1 and Multisystem Disorders and Cancer. The least was found in General Principles and Integrated Neurosciences. Analysis of the MS1 courses showed that Biology of Cells and Tissues covered the greatest percentage of competencies from Legato’s textbook (91%). On average, the MS1 curriculum included 53% of the target competencies.

Conclusions: Though our curriculum provides adequate coverage in some areas, we have several strategies for improvement. Integration of GSWH content throughout the 4-year curriculum with pre- and post- integration assessments of students’ knowledge and attitudes toward gender-specific women’s health issues will be conducted.

POSTER ID: 929
Assessment of the consistency of pregnancy labeling across therapeutic classes

Abstract Presenter: Onyeka Otugo, B.S.1
Other Authors: Joy Chou1, Emmanuel Fadiran, Ph.D.1, Leyla Sahin, M.D.2

Author Affiliations: 1Office of Women’s Health, FDA, 2Pediatric and Maternal Health Staff, Maternal Health Team, CDER, FDA, 10903 New Hampshire Avenue, Silver Spring, MD

Background: Pregnancy labeling is an essential source of information for addressing the potential risks that pregnant women and their developing fetus may face while taking prescription medication. The current pregnancy labeling system uses five letter categories: A, B, C, D and X. The current system often does not adequately reflect the potential reproductive and developmental risks associated with medication use during pregnancy and has been criticized for being simplistic because of an implied representation of hierarchy of risk. Another concern about the current pregnancy labeling system is that drugs within the same category may have similar potential to cause toxicity.
Objective: The objective of this study is to evaluate the consistency of pregnancy labeling across different therapeutic drug classes for the top 20 therapeutic classes by pharmaceutical sales in 2010.

Methods: The top 24 drugs were obtained from Drugs.com’s listing of the top 200 drugs by sales in 2010 and were classified into 20 therapeutic classes. The Clinical Pharmacology website (http://clinicalpharmacology-ip.com/) was used to identify the drugs’ therapeutic classes and the corresponding drugs that shared these classes as well. The current approved US-FDA labels for these drugs were then obtained from the archived label section on Daily Med (dailymed.nlm.nih.gov). Each subgroup was evaluated for the consistency of labeling based on the letter categories and other available pregnancy label information including the presence of animal and human data for a particular drug.

Results: Advair® (Fluticasone/Salmeterol) and Diovan HCT® (Valsartan and Hydrochlorothiazide) were excluded from this study because these drugs were combination products. For the remaining 22 drugs, 20 therapeutic classes were analyzed. Nine classes were found to be consistently labeled with one pregnancy category across class. For example, all statins were consistently labeled category X. For the drugs surveyed in the study, none were classified as pregnancy category A, and the majority was classified as C (66%). For drugs with the same pregnancy category for all 3 trimesters, the presentation of animal studies ranged from 75% to 92%. The drugs that had more than one pregnancy category had a presentation of animal studies in 57%. Human studies reported in pregnancy labeling were rare across all categories; category D and X had the greatest amount of human data (25%).

Conclusions: Some differences exist with pregnancy labeling across therapeutic classes, which should be improved by the implementation of FDA’s new proposed rule for Pregnancy and Lactation labeling. The new labeling will eliminate the letter category and emphasize the need to make updates as new data on drug use by pregnant women become available.

POSTER ID: 930
Gender differences in Sardinian Centenarians from the AKEA-2 Study: the importance of genes-environment interaction

Abstract Presenter: G. Baggio

Other Authors: G. Caselli, R. Lipsi, C. Carru, C. Franceschi, L. Deiana

Author Affiliations: National Research Centre for Gender Health and Medicine and Internal Medicine Unit, Azienda Ospedaliera di Padova; Department of Statistical Sciences, Sapienza University of Rome; Department of Biomedical Sciences, University of Sassari; Department of Experimental Pathology, University of Bologna, Italy

Sex-specific ageing of men and women follow different trajectories. The AKEA 2 Study focussed the attention on Sardinian centenarians because of their higher frequency (Koeing, 2001, Poulain et al. 2004) and the magnitude of the sex ratio with respect to that observed both elsewhere in Italy and worldwide (Deiana et al., 1999). As the number of male centenarians in Sardinia is exceptionally high, this generates a particularly low female sex ratio (FSR). At the 2011 census this ratio was 2.6 women for men compared with 4.2 for the rest of Italy. FSR differences also exist within Sardinia and are linked to the geography of elderly mortality for men. Some areas have the lowest FSR mainly due to lower mortality (higher survival) among men aged 80 and over.

Comparing geography distribution of male survival with male survival sex ratio it is immediately clear that the two geographies are similar. This means that where the survival after 80 years is particularly higher for men, the survival sex ratio is favourable to men. In other words in these areas the FSR is lower than elsewhere.

Moreover there is a fairly high correlation between the geography of the male sex ratio and the geography of mortality for cancers. The advantage enjoyed by men in high longevity zones can be traced to their relatively low mortality for these causes. In addition geography of mortality for cancers does show an overlap with geography of “polluted areas”.

Thus the high male sex ratio in Sardinia (low FSR) is the outcome of lower mortality (higher survival) among over 80-year men and of lower mortality from cancers in a wide pollution-free area of the island.

For speculating on the importance of genes factors it needs to move from macro to micro data analysis. The AKeA2 demographic survey collected preliminary data concerning family genealogies of the Sardinian centenarians (100 men and 100 women) and control groups. A first analysis of the main characteristics of the survey data has demonstrate that centenarian women have on average fewer children than the controls, and at an older age, particularly for their last child. They seem to have been favoured both by a lower fertility, and by the
young age of their parents at the moment of their own procreation. The mothers of centenarians, particularly female centenarians, lived longer on average than those of deceased control groups. The most interesting result concerns the significantly lower number of deaths in the first year of life among the children of the people who survived to become centenarians. Women and men that live longer may have genes or behaviours that enhance the survival of their children in the first year of life.

Longevity is a match between genes and environment and Centenarians are a fantastic model for studying these two fundamental components of life.

POSTER ID: 932

Male reproductive behaviors are affected by 3-Diol, the androgen metabolite

Abstract Presenter: Mario Oyola

Other Authors: Damian G. Zuloaga, Andrea M. Reyna, Robert J. Handa and Shaila K. Mani

Authors Affiliations: 1Dept. of Neuroscience, 2Center on Addiction Learning and Memory, 3Dept. Molecular and Cell Biology, Baylor College of Medicine, Houston, TX. 4Dept. Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ

The reproductive hormone, testosterone, and its metabolites play an important role in inducing organizational effects on the developing brain and other sexual behaviors. It has been well recognized that testosterone can be intracellularly converted in brain tissue to 17-estradiol by the aromatase enzyme or to DHT by 5-reductase. However, DHT is further metabolized to 5α-androstane-3α, 17β-diol (3α-Diol) and to 5α- androstane-3β, 17β-diol (3β-Diol). Moreover, the conversion of DHT to 3β-Diol is unidirectional and recent studies indicate that 3β-Diol preferentially binds to estrogen receptor β (ERβ) and activates transcriptional processes. In contrast, 3α-Diol has little affinity for ERβ or ERα. Ultimately, 3β-Diol is converted to inactive 6α- or 7α-triols (5α-androstan-3β; 6α, 17β-triol; 5α-androstan-3β, 7α, 17β-triol) by the actions of the enzyme CYP7B1. Thus, CYP7B1 may be an important pre-receptor regulator of estrogenic functions mediated by 3β-Diol in the brain. While CYP7B1 has been found in high levels in the brain, its significance in regulating 3β-Diol-mediated functions remains unknown. In this study, we investigated the role of 3β-Diol on the behavioral phenotype using CYP7B1 null mutant mice (CYP7B1-/-).

Our results indicate that male sexual behaviors were significantly reduced in CYP7B1-/--compared to their wild type littermates (CYP7B1+/-). This could be due to a defective vomeronasal olfactory system, since the male CYP7B1-/- mice demonstrated no preference to the female estrous bedding in the olfactory preference test even though testosterone levels were not different. In comparison to the wild type littermates, androgen receptor mRNA was decreased in the olfactory bulb of the CYP7B1-/- mice, while those in the medial amygdala remained unchanged. Consistent with this, testosterone administration to gonadectomized animals down-regulated ARmRNA in the olfactory bulb of CYP7B1+/-, but not in the CYP7B1-/- males. Moreover, the levels of ERβ mRNA in the olfactory bulb were significantly lower in the CYP7B1-/- mice when compared to the CYP7B1+/- mice. Interestingly, no genotype effect was observed in stress-induced anxiety behaviors and stress-responsive hormone levels. Furthermore, sexual differentiation of the brain appears normal in the CYP7B1-/- mice based on the presence of the sexually dimorphic distribution of calbindin-immunoreactivity in the preoptic area. Ongoing studies are aimed at examining the role of 3β-Diol and ERβ on organizational and activational effects of steroid hormones on the brain.

POSTER ID: 933

Sex differences in the effects of testosterone on vocal development and song system morphology in adult male and female canaries

Abstract Presenter: Melvin L. Rouse Jr., M.A., Ph.D., M.D.

Other Authors: Farrah N. Madison, Ph.D., Gregory F. Ball, Ph.D.

Author Affiliation: Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD

The crystallization of song is the endpoint of sensorimotor song learning and is dependent on testosterone. In some seasonal breeding species such as canaries, males go through the sensorimotor stage every year. Female canaries usually sing a simpler song than male canaries but the treatment of females with testosterone (T) can induce a song development process that results in song that is more male-like. In the present study we investigated T-induced song development in male and female canaries. Males were castrated and all birds were placed on short days (8L:16D) for 8 weeks. Male and female cohorts were implanted either with a low (2mm), medium (6mm), high (12mm) silastic implant filled with crystalline T or an empty "blank" control implant (12mm). Immediately after the capsules were surgically implanted subcutaneously,
Sex differences in emotional reactivity in Irritable Bowel Syndrome (IBS) and Human Controls (HC) – an fMRI Study

Abstract Presenter: Kristen Coveleskie

Other Authors: Emeran A. Mayer, Zhiguo Jiang, Suzanne R. Smith, Nuanthi Heendeniya, Kirsten Tillisch, Bruce D. Naliboff, Jennifer S. Labus

Author Affiliations: 1 Oppenheimer Family Center for Neurobiology of Stress, UCLA David Geffen School Of Medicine, Los Angeles, CA, United States; 2 Medicine, UCLA David Geffen School Of Medicine, Los Angeles, CA, United States; 3 Brain Research Institute, UCLA David Geffen School Of Medicine, Los Angeles, CA, United States; 4 VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States

Background: Differences in the relative engagement of cortical (greater in male patients) and affective brain regions (greater in female patients) have been demonstrated between female and male IBS patients, during rectal distension and during an abdominal pain expectation task. However, it is not known if such sex related differences are specific to abdominal pain related task, or if they are only seen in IBS patients.

Aims: To investigate sex differences as well as IBS specific differences in emotional-arousal circuitry during an emotional reactivity task, unrelated to IBS symptoms. Based on our previous work with this task and in assessment of sex differences in autonomic reactivity, we hypothesized greater brain responses to the task would be seen in brain networks related to prefrontal and to central autonomic control (insula cortex [INS], amygdala) in both IBS and HC males.

Methods: Brain response was measured in 72 female (38 HC, 34 IBS) and 46 male (26 HC, 20 IBS) subjects using a Siemens Allegra 3T MRI scanner. Subjects were asked to view and match negatively valenced faces (Face) or geometric forms (Form). The contrast between these two viewing conditions (Face-Form) is considered an index of “emotional reactivity”. Analyses were restricted to a homogenous group of individuals demonstrating emotional reactivity in the right amygdala at a liberal criteria of p<.20. Sex differences during emotional reactivity were tested in apriori specified regions comprising emotional-arousal, cortico-modulatory and homeostatic afferent circuitry by applying a second-level random effects general linear model controlling for subject and using an implicit baseline. Each region of interest was tested using small volume correction specifying a family-wise error rate of p<.05.

Results: 32 HC (7 male) and 27 IBS (10 males) who met criteria for high emotional reactivity were included. In all subjects significant BOLD responses were observed in a wide range of brain regions, including anterior INS, amygdala, hippocampus, anterior mid cingulate cortex (aMCC), and dorsal and ventral lateral prefrontal cortices (PFC). As hypothesized, males, both IBS and HC, showed greater brain activity in response to the task. More specifically, IBS males showed greater activation in several INS subregions, several PFC subregions (left dorsal medial PFC, left dorsal and ventral lateral PFC) and right amygdala compared to IBS females. HC Males showed greater response than HC females in the posterior INS, and the right hippocampus. No regions tested showed greater reactivity in female IBS or HC subjects.
Discussion: In this group of emotional responders, a GI symptom unrelated emotional reactivity task was associated with greater engagement of prefrontal modulatory regions and INS cortex in male subjects, regardless of disease group. These findings are consistent with previous findings using abdominal pain related tasks in both human subjects and rodents, and suggest a generalized sex difference in the response to the brain to a variety of emotionally salient stimuli.

POSTER ID: 936
Female gender associated with less use of reperfusion in ST-elevation myocardial infarction: a study from the RIKS-HIA registry

Abstract Presenter: Nina Johnston1,2
Other Authors: Anna Bonefalk Hermansson1, Claes Held2, Karin Schenck-Gustafsson1
Author Affiliations: 1Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden, Dept. of Medical Sciences, Uppsala University, Uppsala, Sweden; 2Upplands Clinical Research Center, Uppsala, Sweden

Background: Less use of reperfusion therapy in women has been shown in previous studies in patients with ST-elevation myocardial infarction (STEMI). Reasons for refraining include older age and associated comorbidities associated with high risk of net harm, diagnostic difficulties due to atypical symptoms or left bundle branch block (LBBB), or patient delay. We studied the use of reperfusion therapy (i.e. fibrinolysis, percutaneous coronary intervention, or coronary angiography only) in men and women with STEMI and also examined variables accountable for any differential use.

Methods: Patients with a discharge diagnosis of ST-elevation myocardial infarction in Sweden (N=33931 from the Register of Information and Knowledge about Swedish Heart Intensive Care Admissions [RIKS-HIA]) during 2004-2008 were included. Multiple regression analysis was performed to evaluate the association of clinical characteristics (see table) with acute reperfusion therapy.

Results: Rates of reperfusion were lower in women than men. LBBB, atypical symptoms, and delayed presentation were found to have the strongest association with use of less reperfusion. However, even after adjusting for these factors female gender retained its independent association.

Multivariate Model (OR 95% CI)

<table>
<thead>
<tr>
<th></th>
<th>18–59 years</th>
<th>60–74 years</th>
<th>75–89 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=7375</td>
<td>N=12096</td>
<td>N=17845</td>
</tr>
<tr>
<td>Female</td>
<td>1.33</td>
<td>1.16</td>
<td>1.77</td>
</tr>
<tr>
<td>Left bundle branch block</td>
<td>7.79</td>
<td>8.38</td>
<td>10.41</td>
</tr>
<tr>
<td>Atypical symptoms</td>
<td>4.87</td>
<td>5.37</td>
<td>5.71</td>
</tr>
<tr>
<td>Symptom to ECG > 12h</td>
<td>3.69</td>
<td>3.93</td>
<td>3.39</td>
</tr>
<tr>
<td>Renal dysfunction*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (eGFR 40-60ml/min)</td>
<td>1.19</td>
<td>1.10</td>
<td>1.24</td>
</tr>
<tr>
<td>Severe (eGFR<40 ml/min)</td>
<td>2.68</td>
<td>1.95</td>
<td>1.59</td>
</tr>
<tr>
<td>Warfarin treatment</td>
<td>too few</td>
<td>2.00</td>
<td>1.74</td>
</tr>
<tr>
<td>Known diabetes</td>
<td>1.75</td>
<td>1.35</td>
<td>1.17</td>
</tr>
<tr>
<td>Known prior myocardial infarction</td>
<td>1.82</td>
<td>1.82</td>
<td>1.99</td>
</tr>
<tr>
<td>Known prior cardiovascular lesion</td>
<td>too few</td>
<td>1.29</td>
<td>1.30</td>
</tr>
<tr>
<td>c statistic</td>
<td>0.732</td>
<td>0.797</td>
<td>0.822</td>
</tr>
</tbody>
</table>

*eGFRestimated glomerular filtration rate using Cockroft-Gault
Conclusion: We found less use of reperfusion therapy in women compared to men with STEMI. Commonly cited reasons for refraining from therapy did not explain this gender difference.

POSTER ID: 937

Higher myocardial lipid content in female diabetics compared to male with similar diabetes duration correlates with GDF15 serum concentrations

Abstract Presenter: Kosi L1
Other Authors: Chmelik M1, Sponder M1, Strametz-Juranek J1, Kautzy-Willer A1
Author Affiliations: 1Abt. für Endokrinologie und Stoffwechsel, Innere Medizin III, Gender Unit; MUW Wien, 2Abt. für Kardiologie, Innere Medizin II, MUW, Wien, 3Abt. für Radiologie und Radiagnostik, MUW, Wien

Background: Type II diabetes is associated with a diastolic dysfunction of the heart. The reason possibly being the increased myocardial lipid content due to cardiac glucolipotoxicity common in diabetic and obese subjects. GDF15 is an inflammatory and apoptotic protein up-regulated in the injury of the heart. Female diabetics have a 4-6-fold increased risk for cardiovascular events possibly due to lack of the protective estrogen effect compared to non-diabetic subjects.

Methods: 60 Patients, 30 male and 30 female, treated at our diabetes metabolic unit of the Medical University of Vienna underwent magnetic resonance spectroscopy performed with 3 Tesla Siemens MRT. GDF-15 was measured in serum of the patients by Quantikine ELISA assays.

Results: The mean age was 55.9±7.2, weight 88.3±17, BMI 31.6±5.1 kg/m² and duration of diabetes 6±2 years. Female patients had significantly higher myocardial lipid content than male diabetics (1.9±0.5 vs 0.9±0.3, p=0.003). Ejection fraction was decreased similarly in both sexes (51.4±2.3 vs 49.2±0.9, p=0.56). GDF15 levels were increased in both sexes and did not differ significantly (2358±180 pg/ml). However GDF15 serum concentrations strongly correlated with cardiac lipid content (r_S=0.33; p=0.015, r_S=0.35; p=0.009) especially in female patients (r_S=0.35; p=0.009) pointing toward the fact that female diabetics suffer from severe cardiac injury after even 6 years diabetes duration compared to the male patients.

Conclusion: To conclude type II diabetes per se is a risk factor for cardiovascular events, especially in women, perhaps due to increased myocardial fat resulting in diastolic dysfunction, strongly correlating with increased GDF15 levels. GDF-15 can be seen as a possible early marker for cardiac injury in type II diabetic patients, with a special focus on women being at higher risk.

POSTER ID: 938

Papillary thyroid cancer (PTC) gender disparity: a multicentric study

Abstract Presenter: Isabella Merante Boschini1
Other Authors: Maria Rosa Pelizzo1, Isabella Merante Boschini1, Francesca Torresani1, Mariangela Zane1, Chiara Dobrinja1, Francesca Schiavi2, Giuseppe Opocher2, Gian Maria Pennelli1, Massimo Rugge1, Mercedes Robledo4
Author Affiliations: 1Patologia Speciale Chirurgica, Università degli Studi di Padova; 2Unità per i Tumori Ereditari, I0V, Padova; 3Anatomia Patologica, Università degli Studi di Padova; 4CNIO, Madrid

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, accounting for approximately 80% of cases. Our intention is to consider the patients underwent surgery for PTC in different southern European endocrine-surgery centers and to compare females (F) vs males (M) as regards a series of clinical, histopathologic, genetic and molecular variables.

We considered 658 patients underwent surgery for PTC from 2007 to 2011 at Surgical Pathology, University of Padova, and General Surgery Department, University of Trieste. We revised clinical and histopathologic documents and we compared F vs M as regards the following variables: age, extention of surgery, node dissection, TNM, monoplurifocality, BRAF mutations, outcome. A p value less than 0.05 was considered statistically significant.

Comparing F vs M we observed: the F was 489 (74%) vs 169 M (26%) (p<0.015), the mean age was 46 years (range 11-86) in F vs 46 years (range 11-83) in M (p<0.44), total thyroidectomy was realized in 474 F (97%) vs 161 M (95%) (p<0.72), node dissection was realized in 387 (79%) F vs 132 (78%) M (p<0.99), central node dissection in 340 (88%) F vs 94 (71%) M (p<0.75), laterocervical node dissection in 47 (12%) F vs 38 (29%) M (p<0.011), stage I was in 315 (64%) F vs 87 (51.5%) M (p<0.19), stage II in 15 (3%) F vs 4 (2.5%) M (p<0.51), stage III in 126 (26%) F vs 54 (32%)M (p<0.24), stage IV in 33 (7%) F vs 24 (14%) M (p<0.22),
monofocality was in 279 (57%) F vs 89 (52.7%) M (p<0.64), pluri-
focusal was in 210 (43%) F vs 80 (47.3%) M (p<0.76), the associ-
ation with thyroiditis was in 132 F (27%) and in 25 M (15%)
(p<0.001)(BRAF – V600E mutation was identified in 143 (29%) F
vS 52 (30.7%) M (p<0.84).

We revised the follow up in 395 cases. The mean time of follow up
was 37 months (range 1-343) in F vs 45 months (range 4-156) in
M, 251 (88%) F underwent I131radioiodinetherapy vs 91 (83%) M
(p<0.74), the median dose was 132.63 mCi (range 50-500) in F vs
139.42 mCi (range 50-350) in M (p<0.27), the median time of fol-
low up was 37 months in F and 45 months in M (p<0.24), the me-
dian value of Thyroglobulin (Tg) was 7 mU/L (range 0.1-485.3) in F
vs 19.83 (range 0.1-593) in M (p<0.11), F was free of disease in
274 (96%) vs 102 (93.5%) M (p<0.64). The differences statistically
significant regarded the number of patients, the laterocervical node
dissection, the association with thyroiditis.

POSTER ID: 939
Neonatal disruption of the PGE2-E2 signaling pathway in the cerebellum affects normal Purkinje
cell development and sex-specific behaviors relevant to Autism Spectrum Disorder

Abstract Presenter: Jessica Knutson1
Other Authors: Margaret McCarthy, PhD1,2
Author Affiliations: 1Program in Neuroscience, 2Department of
Physiology, University of Maryland School of Medicine, Baltimore,
Maryland

Autism spectrum disorder (ASD) is defined by inappropriate social
interactions, impairments in social communication, repetitive or
 stereotyped behaviors, and abnormal responses to sensory stimuli.
The exact cause is unknown, but ASD is considered a neurodevel-
opmental disorder with complex genetic and environmental origins
and a well-known higher incidence in males versus females. Cere-
bellar pathology is strongly associated with ASD, such as reduced
cerebellar volume, particularly in the posterior vermis (Courchesne
et al, 1988), as well as a reduced number of Purkinje and granule
cells (Palman et al, 2004). Inflammation during the developmental
period between in utero and early childhood is also strongly
associated with ASD - the same time period during which the most
significant cytoarchitectural changes occur in the cerebellum.
Prostaglandin E2 (PGE2) is the principle mediator of inflammation,
ultimately responsible for inducing fever, while its receptor EP3 is
the primary receptor driving the fever response (Kaufmann et al, 1997). Prostaglandins are lipid-derived molecules ubiquitous in
mammalian tissues that function as paracrine, endocrine, and
autocrine signaling molecules as part of a wide variety of physi-
ological functions.

We have discovered a signaling pathway in the cerebellum where
PGE2 stimulates aromatase activity, increasing the conversion of
testosterone into estradiol (E2). Increased PGE2 results in increased
estradiol production and a decrease in spinophilin, a marker for
dendritic spines. This decrease in spinophilin correlates with a de-
crease in Purkinje cell dendritic length with no change in spine density,
as determined by morphological analysis with Golgi-COX
staining. If the pathway is shifted in the other direction, where
PGE2 synthesis is decreased by inhibition of the COX1/2 enzyme,
spinophilin (and Purkinje cell dendritic length) increases, suggesting
this signaling pathway is carefully balanced to control the appropri-
ate development of the Purkinje cell dendritic tree.

Previously we have shown that treatment with the anti-inflam-
matory drug Nimesulide, a COX-2 inhibitor that decreases PGE2 pro-
duction, during postnatal week 2 disrupts not only normal
cerebellar development, but also behaviors relevant to Autism Spec-
trum Disorder. Specifically, males show a decrease in social play be-
havior, an increase in pain sensitivity, and an increase in object
fixation. Here we show that the opposite manipulation, increasing
PGE2 levels directly, results in the same reduced social play behav-
ior in males, with similar abnormalities in other behaviors. No
changes are seen in basic motor tasks or olfactory responses, thus
we conclude that disrupting the PGE2-E2 signaling pathway in the
cerebellum during the second postnatal week interferes with nor-
mal cerebellar development and correlates with abnormal behav-
iors also seen in children with ASD. This suggests that during this
developmental period, fever and inflammation may increase the
risk for development of ASD by altering cerebellar development.
This study was supported by grant R01-MH091424 from the Na-
tional Institute of Mental Health.
OSSD ANNUAL MEMBERSHIP MEETING

Saturday, June 9, 2012
6:00 – 7:00 p.m.

AGENDA

Call to Order by OSSD President

Executive Director Report

Council Reports

BSD Journal Updates

New Business

Introduce and turn meeting over to incoming President.

Open Forum

Adjourn
S P O N S O R S A N D E X H I B I T O R S

S P O N S O R S

Cook Group, Inc.

National Institute of Child Health & Human Development,
National Institute of Health, R13 Grant

BIRCWH K12 Program of the University of Maryland School
of Medicine

E X H I B I T O R S

Institute of Gender and Health

Karger Publishers

Morgan & Claypool Publishers

The Johns Hopkins University Press

D O N O R S

American Dental Education Association

Florence Haseltine, M.D., Ph.D.

Geoffrey Cooper

Jaclyn Schwarz, Ph.D.

Kathleen Curtis, Ph.D.

Kevin Beck, Ph.D.

Noel Bairey-Merz, M.D.

Pamela Ouyang, M.D.

Peter Agre, M.D.

Rebecca Nazark, M.T.S.

Sabra Klein, Ph.D.

Virginia Miller, Ph.D.

Y.S. Prakash, M.D., Ph.D.

Yvette Huet, Ph.D.
STAFF AND PROGRAMS COMMITTEE

SWHR STAFF
Christine Carter, Ph.D., M.P.H.
Mary Hornig, M.P.A.
Hillary Robertson, B.A.
Evan Riggs, B.A.

2012 OSSD ANNUAL MEETING
PROGRAMS COMMITTEE

Co-Chairs
Sabra Klein, Ph.D.
Margaret McCarthy, Ph.D.

Margaret McCarthy, Ph.D.
Sabra Klein, Ph.D.
Jeanette Magnus, Ph.D.
Anne Murphy, Ph.D.
Y.S. Prakash, M.D.
Jessica Mong, Ph.D.
Kim Wallen, Ph.D.
Jacob Raber, Ph.D.
Carolyn Bondy, Ph.D.
Sara Berga, M.D.
Hal Scoffield, M.D.
Steven Chernausek, M.D.
David Sandberg, Ph.D.
Virginia Miller, Ph.D., M.B.A.
Jill B. Becker, Ph.D.
Geert de Vries, Ph.D.
OFFICERS AND COUNCILORS

OSSD OFFICERS

President
Virginia M. Miller, Ph.D., M.B.A.

President-elect
Geert de Vries, Ph.D.

Executive Director
Christine Carter, Ph.D., M.P.H.

Secretary
Sabra Klein, Ph.D.

Treasurer
Kevin D. Beck, Ph.D.

Immediate Past President
Jill B. Becker, Ph.D.

OSSD COUNCIL

Tracy Bale, Ph.D.
Karen J. Berkley, Ph.D.
Susan K. Fried, Ph.D.
Sally Huber, Ph.D.
Sabra L. Klein, Ph.D.
Karen Berkley, Ph.D.
Gillian Einstein, Ph.D.
Jeanette H. Magnus, M.D., Ph.D.
Robert Meisel, Ph.D.
Margaret McCarthy, Ph.D.
Jennifer Cummings, Ph.D.
Christine Distech, Ph.D.
Nancy Forger, Ph.D.
Jorge Morales Montor, M.D., Ph.D.
Anne Murphy, Ph.D.
Delisa Fairweather, Ph.D.
Gillian Einstein, Ph. D.
Jeanette H. Magnus, M.D., Ph. D.
Editor-in-Chief: Arthur P. Arnold (United States)

Biology of Sex Differences, the official journal of the Organization for the Study of Sex Differences and a publication of the Society for Women’s Health Research, is an open access, peer-reviewed, online journal dedicated to presenting advanced research on all aspects of the effects of sex on biology and disease. *Biology of Sex Differences* provides a platform for publishing the most advanced research in which sex is a factor, involving animal models and/or humans.

Sex has profound effects on physiology and the susceptibility to disease. The function of cells and organs depends on their sex, determined by the interplay among the genome and biological and social environments.

Articles published in *Biology of Sex Differences* will be relevant to sex differences in the genome, epigenetics, molecular and cell biology, tissue biology, physiology, and interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal.

The journal publishes the following article types: research, reviews, letters to the editor and commentaries. For further details, see www.bsd-journal.com/info/about/

Reasons for publishing in Biology of Sex Differences:

- All articles published in the journal are open access; universally accessible online without charge.
- High visibility for your work - anyone with Internet access can read your article, free of charge.
- Articles are published immediately upon acceptance.
- Authors retain the copyright of their articles.
- Electronic submission and peer-review makes the whole process of publishing your article simple and efficient.
- Publishing online means unlimited space for figures, extensive datasets and video footage.
- Professional formatting meets the standards expected by researchers.

Submit your next manuscript to *Biology of Sex Differences* www.bsd-journal.com

Associate Editors:
- Sarah L. Berga (United States)
- Carolyn J. Brown (Canada)
- Anne M. Etgen (United States)

Editorial Board:
- Tracy L. Bale (United States)
- Jill B. Becker (United States)
- Carolyn Bondy (United States)
- Barbara Boyan (United States)
- Deborah J. Clegg (United States)
- Adrian Dobs (United States)
- Stephen Franks (United Kingdom)
- Allan Heribson (New Zealand)
- Melissa Hines (United Kingdom)
- Sabra L. Klein (United States)
- Robin Lovell-Badge (United Kingdom)
- J. Aldons Lusis (United States)
- Jeanette Magnus (Norway)
- Virginia M. Miller (United States)
- Jeffrey Mogil (Canada)
- Ken-ichi Morohashi (Japan)
- Sonoko Ogawa (Japan)
- GianCarlo Panzica (Italy)
- Jane F. Reckelhoff (United States)
- Vera Regitz-Zagrosek (Germany)
- Wolfgang Sadée (United States)
- Karin Schenck-Gustafsson (Sweden)
- Andrew Sinclair (Australia)
- David Skuse (United States)
- Yolanda R Smith (United States)
- Meir Steiner (Canada)
- Eric Vilain (United States)
- Kim Wallen (United States)

Editorial Office
For all enquiries about content or submissions please contact the Editorial office at Sally.robertson@biomedcentral.com

Submit your next manuscript to *Biology of Sex Differences* www.bsd-journal.com
INDEX OF AUTHORS

Abston, Eric D 43
Abukendu, Ibrahim 44
Agostini, F. 41
Ager, Peter 88
Ahmed, S. Ansar 66, 67
Ahn, H.F. 33
Alberti, A. 77
Ammini, A.C. 54
Andolf, Elika 21, 46
Arnold, Art 5, 7
Arelöv, Britt 74
Auten, Richard L. 57
Baczkó, Istvan 21
Bader, Angelika 60, 61
Baggio, G. 77, 81
Bailey-Merz, Noel 5, 32, 88
Baker, Candice 44
Bale, Tracy L. 3, 10, 19, 55, 90
Ball, Gregory F. S. 10, 35, 82
Bangasser, Debra A. 5, 10, 33
Beck, Kevin D. 5, 88, 90
Becker, Diane M 50
Becker, Jill B. 3, 10, 89, 90
Bedja, Dajhida 43
Berga, Sara 89
Berkley, Karen J. 90
Berletch, Joel B. 55
Bett, Glenna CI. 46
Bhandari, Ramji 53
Biswal, Shyam 43
Blankenhorn, Elizabeth P. 53
Bobzian, Samara A. Morris 64
Bolton, Jessica L. 57
Bondy, Carolyn 89
Borne, J. 71
Boschin, Isabella Merante 85
Boyan, Barbara 4
Branch, Oralia 6, 11, 38
Brandt, Jessica E. 45
Branham, William S. 52
Broman, Karl 50
Brunazzi, M. C. 41
Buceta, Adriana 43, 44, 45
Buffoni, F. 41
Caretta, Nicola 42
Carrero, Jesus 61
Caru, C. 81
Carvey, Jo D. 44
Carter, Christine 7, 89, 90
Carvalho-Netto, Eduardo 22
Case, Laurie K. 52
Caselli, G. 81

Castonguay, Philip 56
Chae, Jung-woo 73
Chan, Brittany 79, 80
Chaudhari, Sameer 78
Chehab, Leena M. 45
Chen, Benjamin 56
Chen, W. 71
Chernausek, Steven 89
Chmelik, M 85
Christoffel, D.J. 33
Cilano, Alex 76
Coni, Anne M. 4, 11, 31
Connick, Elizabeth 6, 11, 39
Cook, Michael B. 4, 11, 28
Cooper, Geoffrey 88
Cooper, Leslie T. 43, 44, 45
Coronado, Michael J. 9, 43, 44, 45
Covalevskiy, Kristen 83
Cowan, Catharine 66
Cummings, Jennifer 90
Cunningham, Madeleine W 43
Curts, Kathleen S. 58, 65, 88
d'Agostino, Chiara 42
Dai, Rujuan 66, 67
Daragjati, Julia 73
Dave, Aditi 76
Dave, Dipali 72
Deiana, L. 81
Deng, Xinxian 55
Dennis, Tony S. 64
Desai, Varsha G. 52
Devine, Michelle 79, 80
Dickerson, Richard 79
Dickey, Jennifer S. 45
Disteche, Christine M. 55, 90
Dobrinja, Chiara 85
Dobrosielski, Devon A. 78
Douglass, Erika J. 44, 45
Dragon, Julie 53
Dvoratzek, Elke 21
Ebert, Steven N. 44
Einstein, Gillian 3, 11, 90
Enoka, Roger M. 4
Eriksson, Lotta 75
Esposito, S. 69
Euler, Mia von 75
Everhardt, Ashleigh 55
Fadran, Emmanuel 80
Fahrbach, Susan E. 5, 12, 35
Fainweather, DeLisa 43, 44, 45, 90
Fan, Liming 65
Feldberg, Dov 5, 12, 34

Feltrin, Giuseppe 42
Ferrari, M.R. 41
Forest, Carlo 42
Forger, Nancy 65, 90
Fornasa, G. 41
Foster, W. Michael 57
Fox, James G. 4, 12, 29
Fox, Shwanna C. 53
Franceschi, C 81
Francis, Amie 65
Frider, Ann 59, 74
Fried., Susan K. 90
Frisancho, J. Augusto 43
Fritz-Szekerés, M. 47, 48
Fuscoe, James C. 52
Gaiani, S. 77
Gaion, Rosa Maria 73
Gallauresi, Beverly 72
Gallo, Umberto 73
Gerossi, Gino 42
Giannella, G. 41
Gilmour, M. Ian 57
Giuberti, Elisa 41
Glezman, Marek 3, 8, 12, 20
Godfrey, Jodi 79
Golden, S.A. 33
Golt, Stefan 21
Gonzalez-Berrios,, Yanira 45
Gorelick, Daniel A. 5, 12, 35
Grass, Stefan 40
Greenberger, Phyllis 3
Greenspan, Joel D 71
Gregg, Christopher 6, 13, 39
Gregorio, C. De 69
Gullapalli, Rao P 71
Gwechenberger, M. 48
Hallin, Rolf 40
Hammer, A. 47
Hammons, George.J. 49
Hampson, Elizabeth 64
Han, Tao 52
Handa, Robert J. 82
Harrell, Constance S. 56, 70
Hart, David A. 13, 25
Hasteltine, Florence 88
Havill, Lorena M. 4, 13, 26
Heendieniya, Nuwanthi 83
Heid, Bettina 66, 67
Heid, Claes 84
Henriksson, Peter 74
Herman, Eugene 45
Herman, James P. 22

Hermansson, Anna Borenfalk 84
Hernandez, Jean N. 38
Heshmati, M. 33
Hines, Melissa 3, 13, 19
Hochleitner, Margarethe 60, 61, 62
Hodes, Georgia E. 5, 13, 33
Hoenemann, Mario 38
Holm, Lennart 48
Homig, Mary 89
Huard, Johnny 4, 13, 30
Huber, Sally A. 53, 90
Hübitter, Birgitta 61
Huet, Yvette 55, 88
Hülsmann, M. 48
Iacobaeus, Charlotte 9, 21, 46
Ismail, Nafissa I. 9, 24, 56
Jenkins, Marjorie R. 3, 14, 79
Jiang, Zhiqiu 83
Jingxia, Hao 40
Johnson, Leigh 79
Johnston, Nina 84
Jones, Alexis B. 58
Jones, Betsy 79
Jönsson, Lilja Sigrún 60
Jöriseskog, Gun 21, 46
Jr, Leslie T. Cooper 44
Kahan, Thomas 21, 46
Kahn, Deena 9
Kampf, S. 47, 48
Karaniakas, Chrisanthi A. 76
Kararigas, Georgios 9, 21
Karina, Michael 4, 14, 28
Kautzky-Willer, Alexandra 4, 14, 27, 47, 77, 85
Keaser, Michael 71
Kelly, D.A. 65
Kelly, Sean 56
Kew, Richard R. 45
Khagawat, R. 54
Khan, Deena 66, 67
Khurana, M.L. 54
Kiessling, Anna 74
Knight, Kathy 67
Kim, Dong-hyun 73
Klein, Sabra 6, 7, 88, 89, 90
Klinge, Ineke 3, 14
Kloe, Annette de 22
Knosalla, Christoph 21
Knoth, J. 48
Knuston, Jessica F. 67, 86
Kosi, Lena 9, 47, 85
Kostuk, Eric W 43